
Conclusions and Future Considerations:
Parallel processing of raster functions were 3-22 times faster than ArcGIS
depending on file size. Also, processing multiple functions on a single dataset
achieved even greater performance gains (Figure 4). A final test included slope
processing of a 93GB, 25 billion pixel raster file in under 3000 seconds, indicating
continued linear performance even with enormous file sizes.

Future work should include utilization of parallel CPU threads for reading data
into RAM while the GPU processes data, which we believe will provide the most
dramatic performance increase. Additionally, because the greatest efficiencies
were demonstrated when performing multiple computations for the data on the
GPU, future work should include exploration of similar models in climatology,
ecology, remote sensing, and natural resource assessment. There are many GIS
models that require multiple iterations that can see enormous speed
improvements if redesigned within a GPU context.

Results and Discussion:
On average, the introduction of CUDA provided a 7x improvement over the same
function used in ArcGIS.

Execution time for the CUDA functions exhibited a very stable and predictable
linear trend for all functions over the various size raster files, allowing us to better
predict response times for larger data sets. To test the linear fit we forecasted
execution time out to a 93GB (25 billion pixels) raster and predicted an execution
time of 3100. Our actual processing of the file completed in under 3000 seconds.
Unfortunately, the larger file was too large to process in ArcGIS so a comparison
between the products is impossible to determine.

In contrast, while most of the execution times for ArcGIS appear linear with
respect to size, both slope and aspect execution deviate substantially from a
linear fit when the size of the input raster was between 1.4GB and 4.0GB. We
suspect that the deviation is related to the ESRI ADF format’s separation of data
into files between 1.2 GB and 2GB or separate algorithm for datasets over some
threshold size.

The greatest bottleneck was obtaining data from the disk and moving to RAM
(Figure 1, step 1). Once data was on the GPU, parallelization took over and made
short work of the processing. Numerous strategies were used to improve the
data acquisition step with noticeable results. Testing under other hardware
configurations confirmed that having more GPU memory to load larger chunks of
data played a bigger role in execution than having more processing streams.

Parallelizing Raster-Based Functions in GIS with CUDA C
Sean Kirby, University of Maryland, Eastern Shore

William Kostan, University of Virginia
Dr. Arthur J. Lembo, Jr., Salisbury University

y = 0.0329x - 13.967
R² = 0.9885

0

600

1200

1800

2400

3000

0 2000 4000 6000 8000 10000 12000 14000

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

File Size (MB)

CUDA

TRI
Slope
Aspect
Min
Max
Mean
Range
Linear (Max)

y = 0.0666x + 189.9
R² = 0.5954

y = 0.0912x + 167.74
R² = 0.6856

y = 0.1881x - 99.403
R² = 0.9673

0

600

1200

1800

2400

3000

0 2000 4000 6000 8000 10000 12000 14000

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

File Size (MB)

ArcGIS

Slope
Aspect
Min
Max
Mean
Range
Linear (Slope)
Linear (Aspect)
Linear (Max)

y = 0.1391x - 14.046
R² = 0.9909

y = 0.9076x - 39.077
R² = 0.9694

0

1800

3600

5400

7200

9000

10800

12600

0 2000 4000 6000 8000 10000 12000 14000

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

File Size (MB)

All Functions

CUDA
ArcGIS
Linear (CUDA)
Linear (ArcGIS)

Model Instability

Introduction:
A continuing challenge in GIScience and many other fields is the efficient and
economical processing of massive data sets. We describe how to leverage
massive parallel processing through general purpose computing using the
graphics processing unit (GPGPU) for raster GIS operations. Using video-gaming
cards to create parallel processing solutions within the GPU is relatively new
and almost nonexistent in GIScience. By designing a software add-on built to
run select raster analysis operations on a CUDA-enabled GPU, we were able to
achieve a 7x speed improvement compared to traditional (ArcGIS) raster
processes. In addition, our approach allows us to perform raster processing in
under an hour for 93GB files with over 25 billion pixels. Finally, we identify key
areas of future work to improve execution time.

Figure 3: Comparison of ArcGIS and CUDA-C generated performance of several raster functions as
measured by execution time show that CUDA processes the data 3-22 times faster than the corresponding
ArcGIS process. In addition, the CUDA process was perfectly linear (R2 = .98), while the ArcGIS process
exhibited serious instability between 1.25GB and 4GB for Slope and Aspect.

Figure 5: CUDA vs. ArcGIS performance in executing six spatial analysis
transformations per dataset as measured by execution time

Figure 1: CUDA execution model

* Additional speed improvements may be achieved by running this step as separate, parallel
threads on the CPU, thereby allowing the CPU to prepare the next data block while the GPU
is processing data

Data and Methods:
Fourteen ESRI FLT raster files (ranging from 24MB to 12GB) were processed and
analyzed using 3x3 kernel functions for slope, aspect, terrain ruggedness, min,
max, range, and mean. These functions were chosen as they represent
“embarrassingly” parallel functions that can be run independent from one
another, ideal for GPU processing. Each file was processed 20 times to determine
the average speed using both ArcGIS and CUDA-C. The CUDA-C process (Figure 1)
included:

1. Partition data by rows and read into an array in memory*
2. Copy data array to GPU.
3. Launch GPU kernel for raster processing.
4. Process data in parallel in GPU through a combination of blocks and

threads.
5. Upon completion of each kernel, copy data from GPU to the CPU.
6. Write output to the appropriate file (one file per raster function)
7. Additional kernels are launched from data already on the GPU

Figure 2: Oxford County, MD, LiDAR Imagery of Oxford County before (left) and
after (right) slope transformation.

Figure 4: CUDA program integrated into ArcMap 10.0 as a toolbox with full graphical user
interface (GUI)

CUDA Toolbox

Final Software Package:
One of the primary goals of the project was to create a simplistic add-
on to ArcGIS for dramatic performance improvement. This was
accomplished by incorporating the CUDA executable into a model in
ArcToolbox for use any computer with ArcGIS and a CUDA-enabled
GPU

Acknowledgments:
Research was funded by the National Science Foundation under grant number
CCF-1156509 and hosted by Salisbury University.

File Size (MB) ASI Factor

24.719 22.275

521.048 6.597

976.563 3.785

1202.559 5.237

1285.400 8.960

2321.548 9.900

2595.520 3.532

2682.037 8.565

4154.205 4.903

5802.155 4.802

7724.762 5.625

9536.743 6.120

11539.459 5.392

12470.003 4.390

Global Average 7.149

Average Speed Improvement (ASI)

