
Trial Division Method
The most straightforward way to find the factorization of a

number is to compute a list of the primes up to the square

root of the number and try dividing by each of them. This

will always yield a factor, but it is very slow for large factors.

To parallelize it you simply perform each division in parallel

using the GPU.

Results
After much programming and even more debugging, we

have obtained some factorization times that show the GPU

as the clear winner in factoring speed for the two

algorithms, when compared with the serial version of the

same algorithm. Also note that the speed-up is much

greater for Brent’s method than for Trial. This is because

Brent’s method is less data-intensive and more compute-

intensive, and thus better suited for the GPU. In the lower

two graphs we compare the two algorithms on the CPU

and GPU. For each system, the Trial division is faster for

small numbers and then Brent’s method becomes faster for

larger ones.

Conclusions
Based on the results we can see that at least these

particular algorithms benefit from parallelization on the

GPU. The times we have obtained may not, however, be

optimal and in future work, the program could be

optimized to handle larger numbers as well. Also, in the

future general purpose algorithms should be explored.

Brent’s Method
This variant of Pollard’s rho method uses a pseudorandom

sequence to search for factors with a higher probability of

finding one faster than trial division. The evaluation of each

sequence is not readily parallelizable, but since not all

sequences generate a non-trivial factor, it can be

accelerated by testing many different sequences in parallel.

0.01

0.1

1

10

100

1000

1 1000 1000000 1E+09 1E+12 1E+15 1E+18

E
x
e
c
u

ti
o

n
 t

im
e

 (
s)

Number Factored

Brent's method

CPU

GPU

References
- J. Buchmann, V. Müller, Algorithms for Factoring Integers,

2005

- C. Archer, GPU Integer Factorisation with the Quadratic Sieve,

University of Bath, 2010

- K. Zhao, Implementation of Multiple-precision Modular

Multiplication on GPU

- P. Leslie Jensen, Integer Factorization, University of

Copenhagen, 2005

- NVIDIA CUDA C Programming Guide, v.4.2, 2012

- CUDA C BEST PRACTICES GUIDE, v.4.1, 2012

- http://stackoverflow.com/questions/497685/how-do-you-

get-around-the-maximum-cuda-run-time

- http://www.rsa.com/rsalabs/node.asp?id=2190

GPU Acceleration of Special Purpose Integer Factoring Algorithms
Alexander Streit (Undergraduate), Dr. Don Spickler (Faculty Mentor)

NSF REU site EXERCISE (Award #1156509)

0.001

0.01

0.1

1

10

100

1 1000 1000000 1E+09 1E+12 1E+15

E
x
e
c
u

ti
o

n
 t

im
e

 (
s)

Number Factored

Trial Division

CPU

GPU

0.001

0.01

0.1

1

10

100

E
x
e
c
u

ti
o

n
 t

im
e

 (
s)

Number Factored

Brent v. Trial on GPU

Brent

Trial

0.001

0.01

0.1

1

10

100

1000

E
x
e
c
u

ti
o

n
 t

im
e

 (
s)

Number Factored

Brent v. Trial on CPU

Brent

Trial

Brent’s Method Pse
(1) Set x = x0 Mod N;

 y = x0^2 + a Mod N and k = 1.

(2) if (gcd(x-y; N) > 1) then

(3) return (gcd(x-y; N))

(4) end if

(5) while (1) do

(6) Set x = y.

(7) for (j = 1 to k) do

(8) Set y = y^2 + a Mod N.

udocode
(9) end for

(10) for (j = 1 to k) do

(11) Set y = y^2 + a Mod N.

(12) if (gcd(x-y; N) > 1) then

(13) return (gcd(x-y; N))

(14) end if

(15) end for

(16) Set k = 2 k.

(17) end while

Introduction and Motivation
The RSA cryptosystem is in wide use today securing email,

online credit card transactions and more. Following is the

method:
• Choose two primes 𝑝 and 𝑞.

• Compute 𝑛 = 𝑝𝑞.

• Compute φ(𝑛) = (𝑝 − 1)(𝑞 − 1), where φ is Euler’s totient function.

• Choose 𝑒 such that 1 < 𝑒 < (𝑛), gcd (𝑒, φ(𝑛)) = 1.

• The public key is 𝑒 and 𝑛.

• Compute private exponent 𝑑 as 𝑑 ≡ 𝑒−1(𝑚𝑜𝑑 (𝑛)).
• 𝑑 is kept as the private key.

• Anyone can now encrypt a message represented by a number 𝑚 by

calculating the cyphertext 𝑐 = 𝑚𝑒(𝑚𝑜𝑑 𝑛).

• Only the possessor of the private key can decrypt by calculating 𝑚 =
𝑐𝑑 (𝑚𝑜𝑑 𝑛).

The only known way to obtain the private exponent d

mathematically, and thus break the encryption, is to find the

factors 𝑝 and 𝑞 of 𝑛. Factorization is an exponentially

complex computation, and therein lies the security of RSA

because even with today’s supercomputers it is virtually

impossible to factor the 300-400 decimal digit numbers

currently used for RSA key numbers in a reasonable

amount of time.

There are two main types of factoring algorithms in use

today; special purpose, which are good at finding factors of

particular form, and general purpose, which can be used to

factor any integer regardless of the form of the factors. We

implemented two special purpose algorithms for use on a

standard CPU for benchmarking, and on a CUDA enabled

GPU, where we took advantage of parallelization to

accelerate the processes.

