
Motivation
Results

Conclusions and Summary

Bayesian Modeling of Overdispersed Data with
the Tilted Beta Binomial Distribution

Eugene D. Hahn

Department of Information and Decision Sciences
Salisbury University

Joint Statistical Meetings 2020. August 5, 2020

Gene Hahn 1/14



Motivation
Results

Conclusions and Summary

Modeling Success/Failure Data

Binary data with x successes and n − x failures in n
trials is common and important category of data.
Often modeled with the binomial distribution,
p(x) =

(n
x

)

px(1 − p)n−x .
Binomial may be inadequate for real-world data
because of overdispersion.
Beta binomial distribution is often used for such
cases.
Unconditional modeling of data with beta binomial
distribution dates back to Skellam (1948).
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Background

Beta rectangular distribution proposed by Hahn (2008) for
project management.

Overdispersed alternative to Beta.

Tilted beta distribution proposed by Hahn & López Martı́n
(2015).

Permits excesses at the extremes.

p(p|α, β, v , θ) = (1−θ)
(

2−2v+(4v−2)p
)

+θ
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1−p)β−1

(1)

Tilted beta also has p parameter. Accordingly, tilted beta
binomial proposed by Hahn (2012).
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(2015).

Permits excesses at the extremes.

p(p|α, β, v , θ) = (1−θ)
(

2−2v+(4v−2)p
)

+θ
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1−p)β−1

(1)

Tilted beta also has p parameter. Accordingly, tilted beta
binomial proposed by Hahn (2012).

Gene Hahn 3/14



Motivation
Results

Conclusions and Summary

Background

Beta rectangular distribution proposed by Hahn (2008) for
project management.

Overdispersed alternative to Beta.

Tilted beta distribution proposed by Hahn & López Martı́n
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Tilted Beta Distribution

Figure: Examples of Tilted Beta Distributions for: α = 2, β = 3, v = 0
(A); α = 2, β = 3, v = 0.5 (B), α = 2, β = 3, v = 1 (C),
α = 3, β = 2, v = 0 (D); α = 3, β = 2, v = 0.5 (E), α = 3, β = 2, v = 1
(F)
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Tilted Beta Binomial Distribution

Compounding the tilted beta with the binomial produces
the distribution.

p(y |α, β, θ, v) = (1 − θ)
2(y(2v − 1) + n(1 − v) + 1)

(n + 1)(n + 2)
+

θ

(

n
y

)

Γ(α+ β)Γ(α + y)Γ(β + n − y)
Γ(α)Γ(β)Γ(α + β + n)

. (2)
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Tilted Beta Binomial Distribution

Figure: Examples of Tilted Beta Binomial Distributions
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CDF for Tilting Binomial

The tilting mixture component, preceded by 1 − θ in
(2), can be called tilting binomial.
Unlike beta binomial, this distribution has a relatively
simple form for CDF.

F (y |v , n) =















1 if y = n,
(

y(2v−1)+2n(1−v)+2
)

(y+1)

(n+2)(n+1) if 0 ≤ y ≤ n,

0 otherwise.
(3)
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Tilted Beta Binomial Distribution

Several ways to estimate a compounded mixture using
Bayesian methods.

Approach A: Use (2) as marginalized likelihood, place
priors on α, β, θ, v .

Approach B: Use binomial distribution as conditional
likelihood, give p a tilted beta ‘quasi-prior’, place ‘real’
priors on α, β, θ, v .

Approach C: Use the approach familiar from Dempster,
Laird & Rubin (1977). For a two component mixture with
densities f1(·) and f2(·), form the likelihood as f1(·)zi f2(·)1−zi

where zi is a latent binary variable with Bernoulli
parameter θ.

Approach D: Combination of Approach B and C.
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Modeling

Data for state of Maryland from the 2010 U.S. Census.
There are 518 Census places in Maryland. x is number of
people indicating African-American and of one race.

Bayesian MCMC.

5000 MCMC burn-in iterations and 200,000 estimation.
WinBUGS.

Use transformations α = µφ and β = φ(1 − µ) for beta
component parameters.

Uniform (0,1) priors on µ, θ, and v . Uniform (0,100) prior
on φ.

We examine Monte Carlo (MC) error and estimation time.
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Tilted Beta Binomial Results

Table: Parameter Estimates: Posterior Means

Approach A Approach B Approach C Approach D
α 0.5437 0.5439 0.5439 0.5437
β 5.911 5.925 5.925 5.906
µ 0.08674 0.08668 0.08668 0.08684
φ 6.454 6.469 6.469 6.45
v 0.6478 0.647 0.647 0.6484
θ 0.7461 0.7458 0.7458 0.7464

Approaches agree with regard to posterior means.
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Tilted Beta Binomial Model Estimation Time

As mentioned, 200,000 iterations.

Approach B (Binomial) was the fastest, 40% less time than
Approach A.

Approach C (‘EM’) took approximately 40% more time than
Approach A.

Approach D (‘EM’) took approximately 17% more time than
Approach B.

Conclusion: Binomial likelihood approach is faster for
WinBUGS.

Gene Hahn 11/14



Motivation
Results

Conclusions and Summary

Tilted Beta Binomial Model Estimation Time

As mentioned, 200,000 iterations.

Approach B (Binomial) was the fastest, 40% less time than
Approach A.

Approach C (‘EM’) took approximately 40% more time than
Approach A.

Approach D (‘EM’) took approximately 17% more time than
Approach B.

Conclusion: Binomial likelihood approach is faster for
WinBUGS.

Gene Hahn 11/14



Motivation
Results

Conclusions and Summary

Tilted Beta Binomial Model Estimation Time

As mentioned, 200,000 iterations.

Approach B (Binomial) was the fastest, 40% less time than
Approach A.

Approach C (‘EM’) took approximately 40% more time than
Approach A.

Approach D (‘EM’) took approximately 17% more time than
Approach B.

Conclusion: Binomial likelihood approach is faster for
WinBUGS.

Gene Hahn 11/14



Motivation
Results

Conclusions and Summary

Tilted Beta Binomial Model Estimation Time

As mentioned, 200,000 iterations.

Approach B (Binomial) was the fastest, 40% less time than
Approach A.

Approach C (‘EM’) took approximately 40% more time than
Approach A.

Approach D (‘EM’) took approximately 17% more time than
Approach B.

Conclusion: Binomial likelihood approach is faster for
WinBUGS.

Gene Hahn 11/14



Motivation
Results

Conclusions and Summary

Tilted Beta Binomial Model Estimation Time

As mentioned, 200,000 iterations.

Approach B (Binomial) was the fastest, 40% less time than
Approach A.

Approach C (‘EM’) took approximately 40% more time than
Approach A.

Approach D (‘EM’) took approximately 17% more time than
Approach B.

Conclusion: Binomial likelihood approach is faster for
WinBUGS.

Gene Hahn 11/14



Motivation
Results

Conclusions and Summary

Tilted Beta Binomial Model MC Error

‘Digestible’ comparison of MC errors possibly difficult.

However, note that µ, θ and v are on common (0,1) range.

We average the ratios of MC errors for these parameters.

Approach C (‘EM’) had about a 52% greater MC error than
Approach A.

Approach B had about a 9% greater MC error than
Approach A.

Approach D (‘EM’) had about a 3% greater MC error than
Approach C (‘EM’).
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Conclusions and Summary

Estimation Time Conclusions

‘EM’ approaches take more run time due to latent zi , but
less problematic with binomial conditional likelihood due to
ease of computation.

MC Error Conclusions

‘EM’ approaches increase MC error. Marginalizing reduces
MC error.

However, using conditional approach only increases MC
error modestly vs. marginalized.

Summary: multiple approaches to estimation of tilted beta
binomial models exist and data analysis can proceed with
different approaches based on goals.
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