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Abstract

A new approach for examining quality improvement initiatives regarding errors
in the U.S. Census Bureau’s Master Address File (MAF) and the Topologically In-
tegrated Geographic and Referencing System (TIGER) databases is presented. A
stochastic multi-criteria decision-making method involving Bayesian weighted hierar-
chical multinomial logit models is used to conduct inference on the priorities in a
multiple-expert decision scenario. Quality initiatives regarding basic street address-
level address matching, geocoding completeness, and geocoding quality were judged to
be the most important for MAF/TIGER improvement at the 95% probability level.
The approach allows managers to go one step further in understanding the relative
impact of various types of errors on overall quality and thus be better prepared to
select approaches to reduce these errors.

Keywords: decision support systems; stochastic multi-criteria decision making; gov-
ernment; geographic information systems; group decision making

Introduction

The requirement of a decennial census is specified in the Constitution of the United States

(Article I, §2) so that the seats in the U.S. House of Representatives may be apportioned

among the states. To ensure this apportionment is fair and equitable, the U.S. Census Bu-

reau has the following key responsibility: to count each person within the United States in

the correct location. The information derived from the decennial census and supplemen-

tary surveys is used in an extremely broad context, supporting not only policy decision
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making at the federal, state, and local levels, but also diverse activities such as academic

social research, business development, transportation planning, school and housing develop-

ment, public health initiatives, law enforcement, and emergency planning (National Research

Council, 1995). Census information also plays an important role in national elections as the

composition of the U.S. House of Representatives (derived from Census results on popula-

tion) is used to allocate the composition of the Electoral College (e.g., U.S. Census Bureau,

2001). Clearly it is important for Census data to be as accurate as possible and this fact

has not been lost on the executive and legislative branches of the government. Recently

the Office of Management and Budget (OMB), in its capacity of assisting the President, has

issued guidelines to all federal agencies with respect to maximizing data quality and ensuring

the accuracy of statistical information. These guidelines, part of the Federal Data Quality

Act (Public Law 106-554; H.R. 5658, §515) passed in December 2000, charge federal agencies

with the responsibility to “issue guidelines ensuring and maximizing the quality, objectivity,

utility, and integrity of information (including statistical information) disseminated by the

agency” (OMB, 2001).

In order to be able to count each person in the correct location, the Census Bureau

must be able to accurately determine address location. To do this, the Bureau relies on

two important sources of information. One of these is TIGER, the Topologically Integrated

Geographic and Referencing System. This geospatial database, which can be likened to a

digital map, contains visible physical features such as roads, railway lines and bodies of water

as well as numerous invisible administrative and political boundaries such as state and county

lines, ZIP code regions and Congressional district borders. The second source of information

is the Master Address File (MAF). The MAF is a database containing all of the addresses

used in the decennial census and other Bureau surveys. An estimated 120 million household

residences and 60 million business and other addresses are in the MAF (U.S. Department of

Commerce, Office of Inspector General, 2003). Taken together, MAF/TIGER is an extensive

geographic information system.
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It is well known that statistics obtained from surveys are subject to sampling error.

Additionally, an array of different types of non-sampling errors is known to affect surveys

and censuses in general. For example, if an address is not included in the MAF, then no data

can be obtained from the person(s) at that address. Or, if TIGER’s representation of the

location of an address is not correct, then there is a (small) possibility that the true address

is on the other side of a census block boundary. If this happens, the data will be tabulated

in the wrong census block. In either of the two above cases, the Bureau will be unable to

count such persons in the correct location.

Thus, the question naturally arises as to how to reduce or possibly eliminate these dif-

ferent types of error. In organizations, resources are always finite. So, after ways are found

to reduce or eliminate errors, a prioritization initiative needs to be undertaken to deter-

mine which remediating steps are to be taken first. Multi-criteria decision-making methods

(MCDMs) have been shown to be helpful in addressing such problems. In using an MCDM,

a decision maker is able to determine which courses of action are most important or most

preferable by using his or her expert judgment. However, classical deterministic MCDMs

can be shown to be predicated on an assumption that a decision maker’s judgments are so

accurate and well-formed that they can be taken to be completely certain (Hahn, 2003).

While this may be true in some decision-making scenarios, the complexity of MAF/TIGER

ensures that this is quite unlikely to be the case. It is thus preferable to approach the current

problem using stochastic MCDMs (e.g., Ramanathan, 1997; Laininen & Hämäläinen, 2003;

Mustajoki et al., 2005). A key advantage of stochastic approaches to multi-criteria decision

making is that one can conduct inferential hypothesis tests regarding the alternatives under

consideration in a decision problem. Phrased differently, one can examine whether one can

be, say, 95% confident that one alternative is judged to be superior to one another given

that error in the judgments is present.
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Multi-criteria decision making methods: deterministic

and stochastic approaches

MCDMs are an important set of tools for addressing challenging decisions as they allow

individuals to better proceed in the face of uncertainty, complexity and conflicting objectives.

In using these methods, a decision maker evaluates various alternatives along different criteria

by means of expert judgments. The goal is to determine which of the alternatives best

satisfies all of the (possibly conflicting) criteria or objectives. The decision maker will

have to supply expert judgments regarding the extent to which the alternatives satisfy the

objectives as well as the relative importance of the objectives. If the decision maker is

able to do this, he or she need only use a MCDM which is a mathematical procedure for

determining the underlying “priority” or weight of each alternative. There are a variety

of MCDMs to choose from (e.g., Simpson, 1996; Triantaphyllou, 2000, provides a recent

comparative review).

MCDMs are predicated on a series of axioms. As mentioned previously, it can be shown

that classical deterministic MCDMs which utilize scalar numeric judgments are predicated

on judgmental certainty. There are undoubtedly situations where judgments are completely

certain. Nonetheless, we may prefer to use a stochastic MCDM when judgments are uncer-

tain. In such an approach, the uncertainty in judgments is reflected in a probability model.

We can see therefore that classical MCDMs are a special case of stochastic MCDMs where

the uncertainty has been eliminated (or has been assumed to have been eliminated). A

key advantage of using a stochastic MCDM is that a variety of probability statements can

be made regarding the alternatives. For example, we would be in a position to determine

whether we could be 95% confident that one alternative was superior to another.

Given the complexity of MAF/TIGER, in the current study we utilize a newly-developed

stochastic MCDM (Hahn, 2003), which for brevity can be termed a stochastic judgment
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method or SJM, and furthermore extend the methodology to the group decision-making

context. An essential aspect of this method is that the pairwise comparison judgments

are assumed to arise as manifestations of underlying stochastic phenomena. Note that a

pairwise comparison can be conceptualized as a series of “preference outcomes” for a pair of

alternatives. For example, a 2:1 preference for Alternative A over Alternative B indicates

that there are two outcomes of preference for A for every outcome of preference for B.

From this, one can show that the preference outcomes follow a binomial distribution with

underlying priority parameter, p. Briefly, a pairwise comparison ratio Cij, where i 6= j,

results from a pairwise comparison of two alternatives Oi and Oj with underlying weights wi

and wj. Clearly, all w must be positive by analogy to physical weights and for the moment

we constrain w ∈ N and wi ≥ wj, so that Cij ≥ 1. Then Cij indicates the amount by

which Oi is preferred to Oj. That is, for every outcome of preference for Oj, there are Cij

outcomes of preference for Oi. This is essentially the same as the ratio of success outcomes

and failure outcomes in a binomial process. As such, the pairwise comparison ratios can be

used to estimate a binomial process in which wi successes have been observed in (wi + wj)

trials subject to an unobserved preference parameter, pi. Note that this also remains true

when wi < wj, the difference being that in such a case Oj would be preferred to Oi. It is

revealing to divide the numerator and the denominator of Cij by the sum of the weights to

show

Cij =
wi

wj

=

wi

wi+wj

wj

wi+wj

=
pi

1− pi

.

In the above expression, pi/(1 − pi) is the ratio of preferences and pi is the stochastically

derived priority if we take wi ∼ Binomial(wi+wj, pi). If there are more than two alternatives,

the process can be shown to be multinomial by extension. Thus, estimation of the priority

vector, p, may be undertaken by the use of multinomial logit models. Specifically, if i
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indexes the rows and k the columns of the judgment matrix, we have

wik ∼ Multinomial

(
K∑

k=1

wik, pik

)
, (1)

which indicates that the weights have a multinomial distribution given the total preference

outcomes and the underlying priorities of the alternatives. The final priority for each

alternative is obtained by averaging over the I rows in the matrix. So, the final priority for

the kth alternative is 1
I

∑I
i=1 pik. The collection of the I final priorities is the priority vector,

p.

The multinomial logit model continues with the specification that

pik =
exp(αk + βik)∑K

k=1 exp(αk + βik)
.

However, it is important to recognize that the judgments made by a particular decision

maker for a particular set of alternatives are not independent of one another. As has been

recently pointed out by Leung et al. (2005), dependency in judgments can be handled in a

non-statistical way in MCDMS by, for example, using the ANP extension of AHP. In the

SJM, however, it is straightforward to characterize dependence statistically through the in-

corporation of correlation structures in the model (e.g., Hahn, 2006). As such, a hierarchical

model is used here. The hierarchical model provides a means for accounting for judg-

ment dependence which is inherent in multi-criteria decision approaches. The hierarchical

component of the model is

β22, . . . , β2K , β32, . . . , βIK ∼ Normal(0, τ),

which indicates that the unrestricted β parameters follow a common normal distribution

with mean zero and precision τ . Note the parameterization is in terms of the precision as

opposed to the variance (i.e., τ = 1/σ2). A Bayesian approach is adopted for modelling
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purposes. With the modelling specification given above, the posterior is

p(αk, βik, τ |wik) ∝
I∏

i=1

K∏

k=1

p(wik|αk, βik)×
K∏

k=2

p(αk)×
I∏

i=2

K∏

k=2

p(βik|τ)× p(τ). (2)

Another factor to be addressed involves the fact that the judgment matrix is reciprocally

symmetric across the diagonal. Hence, some of the information in the matrix is redundant

with information in other parts of the matrix. It is thus necessary to downweight the

information content of the matrix to obtain accurate standard errors. The appropriate

weight can be shown to be

Q =
I2 + I − 2

2I2

where I is the number of rows. Then, for modelling purposes the adjusted likelihood is

wik ∼ Multinomial

(
Q

K∑

k=1

wik, pik

)
(3)

and we use the adjusted likelihood in Expression (3) instead of the original likelihood in

Expression (1). In summary, the SJM methodology involves the use of Bayesian weighted

hierarchical multinomial logit models. Estimation of the model is straightforward to ac-

complish by using Markov chain Monte Carlo methods. In the original formulation of the

SJM methodology, it was assumed that there was only one expert decision maker providing

judgments. Here, we extend the methodology to accommodate the more general case of

there being a group of experts. Prior to doing so, however, we review the key components

of the model.
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Model goal, objectives and alternatives

The information in TIGER was drawn from a variety of available data sources (O’Grady &

Godwin, 2000) of varying quality (Liadis, 2000). Like TIGER, the MAF has been compiled

from numerous data sources (National Research Council, 2003). Thus, as with TIGER,

quality assurance in the MAF is an important and ongoing concern. Previous MAF quality

assurance efforts in preparation for Census 2000 have been described by Gbur et al. (1994).

The goal of the model is therefore to determine how to best prioritize error remediation

initiatives.

Housing unit coverage

The goal of a census is to provide a complete count of the entire population at a given point

in time. If the whereabouts of every single member of the population is known, then in

principle each person may be counted. However, if the whereabouts of a particular person

is not known, then he or she is very unlikely to be counted. This leads to what is called an

undercount. Because multiple strategies may be used to locate hard-to-find subpopulations,

it is also possible for a variety of reasons to count the same individual more than once.

This leads to what is called an overcount. Perfect coverage of all of the individuals in the

population is the desired goal. As such, this objective is one of high priority for the Bureau.

Block assignment

The Census Bureau tabulates data at a number of geographical levels. These include the

familiar state and county levels as well as smaller levels. The smallest geographical level

utilized by the Bureau is the census block. If an individual is assigned to the wrong block,

then she will be counted but in the wrong location. Thus, a failure to locate an individual in

the correct block is of major concern. However, this kind of error is less severe than missing

the individual entirely and moreover after aggregation over one or two geographic levels the
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chance that such an error will disappear is considerable (for example, an individual may be

assigned to the wrong block but the chances he or she is assigned to the wrong state are

very small).

Field operations

The Bureau relies considerably on mailed surveys to collect information. Collecting infor-

mation by mail is very inexpensive. However it has long been appreciated that, despite

being economical, mail survey results are susceptible to bias due to nonresponse (Hansen &

Hurwitz, 1946). To ameliorate this bias, Census field enumerators conduct follow-up inter-

views with non-responders. Thus, we see that the objective of enhancing field operations is

important. However, given an adequate level of field operations, the previously mentioned

objectives which pertain to counting each person in the right location are more crucial to

the integrity of census results.

Software applications development

A key task of the software applications associated with MAF/TIGER is to provide for

geocoding. When an address is geocoded, it is mapped or assigned to a specific location

so that the data associated with that address may be tabulated appropriately. Some kinds

of errors are known to affect this automated geocoding process and thus require additional

resources to be utilized for correction. Thus, errors that affect software applications are

undesirable and the expectation is that these errors should not exist. However, in many

cases workarounds for these errors can be devised.

Alternatives

There are nine quality initiatives that constitute the alternatives under consideration. Ini-

tiative 1 is geocoding completeness. Geocoding completeness refers to the percentage of
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addresses that the automated address geocoding system assigned to a set of census geogra-

phies. Initiative 2 is geocoding quality, which refers to the correctness of the census block

assignment. Address conversions, Initiative 3, involve mainly the change of a rural route

address to a city style address. Feature coverage, Initiative 4, refers to the presence of all

existing road features in the TIGER database. Feature ID accuracy, Initiative 5, refers to the

presence of a feature’s name and the accuracy of the name. For example, required prefixes

(such as 123 North Main) and/or suffixes (such as 1600 Pennsylvania Avenue, N.W.) must

be present and correct. A basic street address (BSA) is the “house” number and street name

assigned by local government authorities to a structure or building for identification. Thus,

address matching-BSA level, Initiative 6, refers to the accuracy of the automated address

matching of a new address to a building. Address matching-within BSA, Initiative 7, refers

to the accuracy of the automated address matching of a new address with an apartment des-

ignation within a building. Group quarters identification, Initiative 8, refers to the correct

identification of a group quarters (e.g., jails, nursing homes) as a group quarters since enu-

meration procedures for group quarters are different. Finally, TIGER Map Enhancements,

Initiative 9, are additional locations added to the TIGER database to improve map usability

(primarily for enumerators) and map appearance.

Empirical analyses

Examining the initiative categories

The four categories of objectives were examined first (see also the top of Figure 1). Judgments

regarding the contribution of the different initiatives towards MAF/TIGER improvement ef-

forts were obtained from four senior Bureau members with MAF/TIGER responsibilities

(three with collective Bureau experience of over 70 years and the fourth a Ph.D. geogra-

pher). The decision task was administered by having each decision maker make pairwise

comparisons among the alternatives with respect to a particular objective. For example,
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with respect to housing unit coverage, each expert was asked how much more preferable

was geocoding completeness as compared to feature ID accuracy. Experts used a numeric

scale anchored with descriptive labels. A 1:1 preference for Alternative A over Alternative

B denoted equal preference, a 3:1 preference denoted a moderate preference for A, and 5:1,

7:1, and 9:1 preferences denoted strong, very strong, and extreme preferences respectively.

Intermediate scale values were used for intermediate judgments and the reciprocal of the

above values were used when B was preferred to A.

In the case of four experts, we again note that judgments are conditionally independent

given the parameter vector. We can then extend the method described in Expression 2 as

follows. The model as described is replicated for each one of the experts. Specifically, if the

experts are indexed by n, the posterior is

p(αkn, βikn, τn|wikn) ∝
N∏

n=1

I∏
i=1

K∏

k=1

p(wikn|αkn, βikn)×
K∏

k=2

p(αkn)×
I∏

i=2

K∏

k=2

p(βikn|τn)×p(τn). (4)

Markov chain Monte Carlo integration can then be utilized to obtain aggregate results for the

group. In the current study, vague priors were placed on all model parameters. Specifically,

the α and β coefficients were given vague independent normal priors (means of zero and

variances of 100,000) and τ was given a vague gamma prior (shape and scale parameters of

0.05). The first 10,000 iterations of the run were discarded as a burn-in period. The chain

was then allowed to run for an additional 50,000 iterations. In general, this class of models

is well-behaved and convergence to the posterior is rapid.

———————— Figure 1 About Here ————————

Among the categories of objectives, in Table 1 we see that housing unit coverage is of the

highest concern overall with a priority of almost 50%. It was followed by block assignment

with an appreciably smaller contribution than housing unit coverage (priority of 35%). By

contrast, field operations and software applications development had priorities of less than
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10%. As a point of reference, we compare the results of the current method to a deterministic

MCDM based on pairwise comparisons, the Analytic Hierarchy Process (Saaty, 1977). The

priority estimates from both of these MCDMs appear in Table 1. AHP gives more weight to

the two middle-ranked categories of block assignment and field operations. SJM by contrast

gives more weight to housing unit coverage. However, at a broader level the priorities

are fairly consonant, especially considering the priorities in both cases were generated by

distinctly different mathematical approaches. For example, the mean absolute deviation of

one set of estimates from the other was only 0.004.

———————— Table 1 About Here ————————

Table 1 shows that the priorities of some categories of initiatives seem to be much different

from others. For example, the priority of housing unit coverage is over six times greater than

the priority of software applications development. However, a user of a deterministic MCDM

could only make qualitative statements regarding any differences in the priorities. By

contrast, a user of a stochastic MCDM can conduct inference on the differences in priorities.

That is, he or she will be able to determine whether the priorities of two alternatives are

significantly different at the 95% probability level (or some other level of his or her choosing).

This enables the user of a stochastic approach to put his or her conclusions on a more robust

footing. By the same token, if two alternatives cannot be found to be significantly different

from one another, again some valuable information has been obtained regarding the situation

at hand. The second-to-last column of Table 1 lists the 95% posterior probability intervals for

the priority parameters. We see that the probability interval for housing unit coverage does

not overlap with those of field operations and software applications development. Thus, the

priority for housing unit coverage is significantly different from the latter two. By contrast,

we can see there is some overlap between the intervals for housing unit coverage and block

assignment. Not surprisingly, the two priorities are not significantly different. In particular

the 95% probability interval for the difference score of these two priorities contains the value

zero. Hence we cannot conclude that these two categories’ priorities are different from one
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another at the 95% probability level. Along similar lines, block assignment differs from field

operations and software applications development at the 95% level. Field operations and

software applications development, however, cannot be distinguished at the 95% level.

Examining the initiatives

Having examined the priorities of the criteria, we now turn to an examination of the overall

model and the quality improvement initiatives themselves. The four categories and the nine

proposed initiatives were arranged into the structure that appears in Figure 1. All other

things being equal, we might expect initiatives which address the highly important category

of housing unit coverage to be the most preferred. Yet we would also want to simultaneously

consider the impact of the various initiatives themselves. For example, it might make sense

to prioritize a very impactful initiative for a moderate-priority category ahead of a minor

initiative for a high-priority category. This can be accomplished by separating the initiatives

for each particular error category and calculating their individual priorities. Then, one may

calculate an overall or global priority for each initiative by multiplying its individual priority

by the priority of the error category with which it is associated. The stochastic modelling

proceeds in a likewise fashion. Note that initiatives which do not belong to the same error

category are independent of one another conditional on the parameter vector. So, five

multinomial logit models as described in Expression 4 can be run essentially in parallel: one

model for the error categories and one model for the set of initiatives under each of the four

error categories. Specifically, if the models are indexed by m and the experts by n, the final

posterior is

p(αkmn, βikmn, τmn|wikmn) ∝
M∏

m=1

N∏
n=1

I∏
i=1

K∏

k=1

p(wikmn|αkmn, βikmn)

×
K∏

k=2

p(αkmn)×
I∏

i=2

K∏

k=2

p(βikmn|τmn)× p(τmn).

(5)
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The global priorities for the initiatives are then obtained by MCMC methods by multiplying

each initiative’s priority by the priority of its error category and summing across categories.

Vague priors were again used for all parameters and estimation was based on 50,000 iterations

after a 10,000-iteration burn-in.

Table 2 contains the summary statistics of the initiatives’ aggregate global priorities.

More tellingly, Figure 2 displays a box plot of the global priorities of the 9 initiatives sorted

in descending order of priority. The whiskers denote the beginning and the end of the

95% posterior credible interval for each initiative’s global priority. We can see that the

initiative that was judged to contribute most to the overall goal was the BSA-level address

matching initiative (I6). Following our previous development, for inferential purposes we

may construct the difference of the priorities of initiatives i and j, which may be denoted

δij. If the 95% posterior interval for δij excludes zero, then evidence that pi 6= pj is obtained.

Returning to the initiatives, I6 was significantly greater than (or significantly preferable to)

the remaining initiatives at the 95% level with the exception of geocoding completeness (I1).

Thus, the BSA-level address matching initiative is judged to be one of the most important

initiatives to implement. The initiative with the second highest priority was geocoding

completeness (I1). This initiative was significantly preferable to the remaining lower-ranked

initiatives with the exception of geocoding quality (I2). In turn, geocoding quality (I2)

was found to be significantly preferable to the remaining alternatives below it in Figure 2.

Hence, I6, I1, and I2 appeared to form a top tier of alternatives in terms of preferability

or priority. Regarding the next set of initiatives, address conversions (I3) was found to be

significantly preferable to the initiatives below it save feature coverage (I4). In turn, both

feature coverage (I4) and address matching within BSA (I7) could only be differentiated

from lower-ranked group quarters identification (I8) as well as TIGER map enhancements

(I9). Lastly, both feature ID accuracy (I5) and group quarters identification (I8) were judged

significantly preferable only to TIGER map enhancements (I9). A complete listing of the 36

difference score summary statistics can be found in the appendix.
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———————— Table 2 About Here ————————

———————— Figure 2 About Here ————————

Discussion

The current paper extends the literature on stochastic MCDMs by providing a multiple-

expert generalization of the stochastic judgment method. It also appears to be the first

paper to describe the use of multiple-expert MCDMs in the context of GIS, as a recent

review of the literature on the intersection of decision making and GIS only describes single-

expert decision making (Huerta et al., 2005). In terms of governmental decision making, the

method allows decision makers to conduct mult-criteria decision making in the context of

uncertain judgments which are often prevelant in the highly complex issues faced by govern-

ment agencies. Here, the results show that in terms of program enactment there is a top-tier

grouping of initiatives that are judged to be significantly most important in terms of impact

on MAF/TIGER improvement efforts. These initiatives are BSA-level address matching

(I6), geocoding completeness (I1), and geocoding conversions (I2) respectively. Additional

attention should be focused on these three initiatives. Among this top tier, further delin-

eation is possible in that the first-ranked initiative was significantly differentiable from the

third-ranked initiative. A second tier of alternatives also is present in the results. This sec-

ond tier consists of address conversions (I3). Note that within a tier some initiatives are not

significantly different from one another. This indicates that the evidence for distinguish-

ing these initiatives from one another may be insufficient given the presence of error in the

judgments. Thus, for practical purposes one could consider treating them as a grouping or

a block to be implemented simultaneously if resources were available.

It is worth pointing out that while a user of a stochastic MCDM such as the one described

here would know which initiatives are significantly different from one another, a user of a

deterministic MCDM would not. Thus, the practical usefulness of the approach is twofold.
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First, knowledge about which alternatives are significantly preferable allows for more robust

conclusions to be drawn. Second, this knowledge also permits suspect conclusions to be

avoided. Consider feature coverage (I4) and feature ID accuracy (I5). A user of a deter-

ministic MCDM might be very “confident” that feature coverage was preferable to I5 because

the priority for feature coverage is over 20% larger than that of feature ID accuracy in Table

2. However, we can see from Figure 2 and the δ statistics in the appendix that such a

conclusion is unwarranted. In the current scenario the decision makers could look at Figure

2 and the δ values and see that they could not be very confident that feature coverage was

preferable to feature ID accuracy. In terms of governmental policy recommendations, these

alternatives cannot be differentiated at the 95% level given the current state of information.
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Appendix – Difference Scores for Aggregate Global Priorities

2.5% 97.5%
Parameter Mean S.D. Quantile Quantile

δ12 0.029 0.018 -0.006 0.063
δ13 0.059 0.014 0.031 0.087
δ14 0.080 0.014 0.053 0.108
δ15 0.098 0.013 0.072 0.124
δ16 -0.014 0.016 -0.044 0.018
δ17 0.084 0.014 0.057 0.110
δ18 0.104 0.013 0.080 0.130
δ19 0.157 0.012 0.134 0.180
δ23 0.030 0.015 0.002 0.059
δ24 0.051 0.017 0.019 0.084
δ25 0.069 0.014 0.041 0.097
δ26 -0.043 0.017 -0.076 -0.009
δ27 0.055 0.015 0.025 0.085
δ28 0.075 0.013 0.050 0.102
δ29 0.128 0.012 0.104 0.153
δ34 0.021 0.013 -0.004 0.046
δ35 0.039 0.011 0.017 0.060
δ36 -0.073 0.014 -0.100 -0.046
δ37 0.025 0.012 0.002 0.047
δ38 0.045 0.010 0.025 0.066
δ39 0.098 0.009 0.081 0.116
δ45 0.018 0.011 -0.003 0.039
δ46 -0.094 0.014 -0.122 -0.065
δ47 0.004 0.011 -0.018 0.026
δ48 0.024 0.010 0.004 0.045
δ49 0.077 0.009 0.060 0.095
δ56 -0.111 0.013 -0.137 -0.086
δ57 -0.014 0.010 -0.034 0.005
δ58 0.007 0.009 -0.011 0.024
δ59 0.059 0.008 0.044 0.074
δ67 0.097 0.014 0.071 0.124
δ68 0.118 0.013 0.093 0.143
δ69 0.170 0.012 0.148 0.193
δ78 0.021 0.010 0.001 0.040
δ79 0.073 0.008 0.057 0.090
δ89 0.052 0.007 0.039 0.066
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Figure 1: Model structure
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Figure 2: Aggregate global priorities and 95% posterior intervals for quality initiatives

I9
I8

I5
I7

I4
I3

I2
I1

I6

0.05 0.10 0.15 0.20 0.25

Priority

In
iti

at
iv

es

19



Table 1: Priority estimates for initiative categories

SJM SJM Deterministic
Category Priority 95% Interval AHP Priority
Housing Unit Coverage 0.492 (0.380, 0.606) 0.484
Block Assignment 0.353 (0.251, 0.465) 0.359
Field Operations 0.080 (0.028, 0.152) 0.082
Software Applications Development 0.075 (0.024, 0.145) 0.075

Table 2: Aggregate global priority estimates for initiatives

Stochastic Parameter
Initiative Global Priority S.D. 95% Interval

I1 0.177 0.010 0.157 – 0.198
I2 0.149 0.012 0.126 – 0.172
I3 0.119 0.008 0.103 – 0.135
I4 0.097 0.008 0.082 – 0.115
I5 0.080 0.007 0.067 – 0.093
I6 0.191 0.010 0.171 – 0.212
I7 0.094 0.007 0.080 – 0.109
I8 0.073 0.006 0.062 – 0.085
I9 0.021 0.004 0.014 – 0.029

Full names of the initiatives appear in Figure 1 (e.g., I1 is geocoding completeness.).
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