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Abstract

Binary success/failure data is an important type of data which occurs in a wide range of
fields and application domains. We examine a new overdispersed statistical distribution for
this type of data which is particularly suited to ‘big data’ contexts. The distribution, called the
tilted beta-binomial distribution, has a number of attractive properties with regard to tractabil-
ity and interpretability. We apply the distribution to the analysis of population data from the
2010 U.S. Census. We find the tilted beta-binomial distribution provides a superior fit com-
pared to the beta-binomial distribution in the current data set and provides new options for
modeling success/failure data. In addition to addressing overdispersion, the distribution has
implications for generating new insights by revealing underlying latent subgroups in data.
Keywords: Finite mixture models, discrete distributions, Bayesian modeling, demographic
data.

1 Introduction

Binary data consisting of x successes and n − x failures in n trials is an important data type oc-
curring in a very wide range of fields and application domains. This data is often modeled with
the binomial distribution and hence is often termed binomial data. However, it is common to find
that the variance specified by the binomial distribution is smaller than is actually observed in the
data. In these instances, the data is described as either having extra-binomial variability or as
exhibiting overdispersion. For example, toxicological research using litters of mice often reveals a
strong effect of litter membership (Brooks et al. 1997, Luo and Paul 2018). Mice in the same litter
will tend to have similar responses to a potential toxin. The litter functions as a cluster composed
of similar observations, giving rise to a larger variance than would be found if all observations
were truly independent. Clusters and overdispersion are a common phenomenon in diverse areas
such as microbiome research (Hu et al. 2018, Aldirawi and Yang 2022), quality assurance (Hedt-
Gauthier et al. 2013), hospital bed occupancy (Gange et al. 1996), library book circulation (Gelman
and Sichel 1987), seed germination (Crowder 1978, Cepeda-Cuervo and Cifuentes-Amado 2020),
criminology (Haining et al. 2009), and behavioral neuroscience (Ferrari and Comelli 2016). Data
that has a spatial nature may also have clusters and may therefore exhibit overdispersion (Shiyomi
et al. 2000, Haining et al. 2009).
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A thought experiment easily shows why overdispersion is common when data occurs in clus-
ters or otherwise has a hierarchical component. Suppose a first data set follows a simple binomial
model with probability π and sample size n. Suppose a second data set is a mixture of two equally-
sized binomially-distributed groups (possibly latent) that would be better described by parame-
ters π1 and n/2 for Group 1 and π2 and n/2 for Group 2 with π1 ≫ π2 (we ignore the topic of
estimation of mixture weights for clarity of exposition). However suppose we apply the simple
binomial model to this second data set as well. Then it is well known the binomial mean, nπ, can
still be consistently estimated in both data sets despite overdispersion (Cox 1983). Applying the
binomial variance formula, nπ(1 − π), to both data sets will however lead to an underestimate of
the variance in the second data set because the reality of π1 ≫ π2 has not been reflected in the
statistical model. A formula can be easily derived but it suffices to realize the expectation of the
squares must be larger in the second data set. Clearly the simple binomial variance will then be
too small for the second data set.

In this thought experiment we know there are exactly two (possibly latent) groups with param-
eters as stated but in real-world contexts this level of certainty may not exist. We may be unaware
of such properties of our data. However our lack of awareness does not mean the issue can be
ignored. Failure to properly account for overdispersion in binomial data leads to overly precise
estimates and increases in Type I error rates. As the above thought experiment shows, failure to
properly account for overdispersion can also lead to poor out-of-sample predictive performance.
To reduce these problems researchers began to seek better models for overdispersed binomial data
using alternative distributions such as the beta-binomial distribution (Williams 1975). This trend
has been assisted in recent years by increases in computing power and the existence of larger
datasets which may exhibit richer patterns of clustering.

In this paper we expand the scope of knowledge about a relatively new distribution for mod-
eling overdispersed binomial data called the tilted beta-binomial distribution. The distribution
generalizes the beta-binomial distribution and is capable of modeling greater amounts of overdis-
persion than the beta-binomial. As for a brief review of its literature, to date Cepeda-Cuervo
and Cifuentes-Amado (2020) have made the important contributions of obtaining moment ex-
pressions and displaying its suitability for regression modeling. The fact that we can find explicit
expressions for moments highlights the suitability of the distribution for use in ‘big data’ contexts
such as business, government, and research applications. This is because strictly numerical es-
timation of fundamental parameters can become burdensome in big data contexts. Aside from
Cepeda-Cuervo and Cifuentes-Amado (2020), it seems little else about this distribution has been
published to this . We extend the literature on this distribution in this paper by providing its MGF,
CF and CDF. We then describe three new equivalent alternative formulations (types) for the dis-
tribution. We examine these in depth to reveal their relative advantages for different situations.
We also present modeling of the mixture weight for increasing understanding of possible latent
classes and examine a large real-world data set.

This paper is organized as follows. Section 2 presents the two main approaches for modeling
overdispersed binomial data. Section 3 describes the tilted beta-binomial distribution and presents
foundational results. Section 4 contains modeling applications from both maximum-likelihood
and Bayesian viewpoints. Finally Section 5 presents conclusions and opportunities for future
research.
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2 Literature

The two main families of methods for handling overdispersion are the conditional approaches
such as random-effects modeling arising out of the generalized linear model tradition and the un-
conditional binomial mixture distribution approach (Anderson 1988, Dey et al. 1997). In terms of
the first approach, Williams (1982) redefined the binomial variance function to include an overdis-
persion parameter and then conducted quasilikelihood modeling conditional on the overdisper-
sion parameter and a linear predictor using the logit link function (see also McCullagh and Nelder
1989, ch. 4). Such quasilikelihood approaches do not use a full distributional specification. Instead,
the approach is formulated in terms of a mean function and a variance function (McCullagh and
Nelder 1989) and then the model is estimated iteratively to minimize an error function. In related
work generalized estimating equations for extra-binomial variation were presented by Zeger and
Liang (1986). Williams (1982) also described the use of random effects models in terms of itera-
tively reweighted least-squares estimation. Stiratelli et al. (1984) introduced a random-effects lo-
gistic regression model for repeated binary data where overdispersion arose from random effects
that followed a multivariate normal distribution. Ochi and Prentice (1984) presented a model
where data was taken to be binomial conditional on a multivariate probit link function transfor-
mation of the linear predictor. Additional examples of random-effects models for overdispersed
binomial data include Chen and Ahn (1997).

As for the second approach, characterizing the data unconditionally using a beta-binomial
distribution in terms of an overdispersed binomial dates back to at least Skellam (1948). The beta-
binomial distribution has been extensively applied to modeling overdispersion (Williams 1975,
Anderson 1988, Johnson et al. 2005). Other mixture-based approaches have been used to han-
dle overdispersion. For example, Morel and Nagaraj (1993) discussed the use of a finite mixture
of binomials to model overdispersion in binomial and multinomial data. Brooks et al. (1997) in-
troduced a finite mixture model where the data was assumed to follow a binomial distribution
with probability θ and beta-binomial with probability (1 − θ). Morton (1991) formed a ratio of
composed of overdispersed Poisson variables to get an extended negative hypergeometric distri-
bution. He described that the moments of this distribution are typically not available in a closed
form, but that quasi-likelihood methods can be used to model data according to this distribution.

Extensions of the beta-binomial have also been proposed throughout the statistical literature
(Wilcox 1981). More closely related to the current work, Rodrı́guez-Avi et al. (2007) presents an
extension of the beta-binomial distribution wherein the mixing distribution is the generalized beta
distribution. This distribution shares the currently proposed distribution’s ability to handle exces-
sive skewness. However, the mean, variance, and other moments of the generalized beta-binomial
distribution are not available in closed form and must be found numerically (Rodrı́guez-Avi et al.
2007, p. 57). A recent bivariate extension by this research team also lacks explicit moment expres-
sions (Olmo-Jiménez et al. 2011). Chen and Novick (1984) also examine the posterior distribution
arising from a binomial distribution that has been given a generalized beta prior.

Some authors have separately applied both conditional and unconditional approaches to a
given data set. For example, Dean (1992) discusses fitting binomial data with the beta-binomial
distribution or modeling using a logistic link function and normal random effects. Molenberghs
et al. (2012) observe that the beta-binomial distribution can be re-expressed as a binomial dis-
tribution with beta-distributed random effects. They therefore propose a modeling approach
in which the random beta-distributed and normally-distributed random effects appear simulta-
neously (Molenberghs et al. 2012). However, Molenberghs et al. (2012) focus on a conditional
modeling perspective and it does not appear that the distribution implied by their model has a
closed-form expression or has closed-form moments.
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One problem with the conditional approaches based on non-beta random effects is that they
may become increasingly computationally demanding as the size of the data set increases. Monte-
Carlo based approaches encounter particular difficulty with massive data sets, requiring either
extensive run-times and memory requirements or else ingenious strategies on the part of the re-
searcher (see, e.g., Huang and Gelman 2005). The absence of closed-form expressions for essential
terms such as expectations and variances necessitates large computational effort that can become
extreme with the massive data sets encountered with regularity in today’s environment. The
current paper shows over multiple datasets that tilted beta-binomial distribution has the desir-
able properties of handling large amounts of overdispersion while still retaining the tractability of
closed-form expressions.

The beta-binomial distribution has attracted increased attention since the work of Skellam
(1948). Johnson et al. (2005, §6.9.2) provided a literature review of early references through the
1970s. More recent references are discussed in the previous section (e.g., Brooks et al. 1997, Crow-
der 1978, Gange et al. 1996, Gelman and Sichel 1987, Hu et al. 2018, Luo and Paul 2018, Shiyomi
et al. 2000) as well as previously in this section. As for the literature on the tilted beta-binomial,
to date Cepeda-Cuervo and Cifuentes-Amado (2020) have made the important contributions of
obtaining moment expressions. They have also displayed its suitability for regression modeling
in a seed germination data set involving seeds on 21 plates. We extend the literature on this dis-
tribution in this paper by providing its MGF, CF and CDF. We then describe three new equivalent
alternative formulations (types) for the distribution in Section 4.2.1. We examine these in depth
to reveal their relative advantages for different situations. Modeling of the mixture weight is also
examined in Section in the context of a large real-world data set.

3 The Tilted Beta-Binomial Distribution

3.1 Background

Hahn and López Martı́n (2015) proposed the tilted beta distribution. The density function of a
random variable X following the tilted beta distribution with α > 0, β > 0, v ∈ [0, 1], and θ ∈ [0, 1]
is

p(x|α, β, v, θ) =

(1 − θ)
(
2 − 2v + (4v − 2)x

)
+ θ

Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 if 0 ≤ x ≤ 1,

0 otherwise.
(1)

The tilted beta distribution is a mixture distribution where the beta distribution becomes predom-
inant as θ increases, while the tilting distribution becomes dominant as θ decreases. As seen in (1),
the tilting distribution has the following density function

p(x|v) =
{

2 − 2v + (4v − 2)x if 0 ≤ x ≤ 1,
0 otherwise.

(2)

The tilting distribution is also a special case of the generalized Topp and Leone distribution (Kotz
and van Dorp 2004) under a slightly different parameterization.

The tilted beta is capable of expressing larger variances than the beta distribution. As θ de-
clines, the tilting distribution introduces more density at the endpoints. When v = 1/2 the tilting
distribution is equivalent to the rectangular distribution. In this case, the rectangular component
allocates density uniformly across the support. This special case is called the beta rectangular dis-
tribution (Hahn 2008) and it has seen use in project management (Herrerı́as-Velasco et al. 2011,
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Garcı́a et al. 2011, Gładysz et al. 2015) as well as beta rectangular regression modeling (Bayes et al.
2012). When v is some other value, the tilting component allocates more density to one endpoint
and less density to the other. This property of the v parameter allows for greater flexibility in
terms of expressing skewness than does the standard beta distribution. To date the tilted beta dis-
tribution has been applied principally in project management contexts (Garcı́a Pérez et al. 2016,
Udoumoh et al. 2017, Salas-Morera et al. 2018) and more recently it has been used for regression
modeling (Hahn 2021).

3.2 The Tilted Beta-Binomial Distribution and Previous Literature

Compounding the tilted beta in (1) with the binomial distribution leads to a distribution called the
tilted beta-binomial distribution. A number of foundational aspects of this distribution have been
discussed by Cepeda-Cuervo and Cifuentes-Amado (2020) under a different parameterization.
We review some of these previous foundations in this subsection. The distribution’s probability
mass function (PMF) is

p(x|n, α, β, v, θ) =(1 − θ)
2
(
x(2v − 1)− nv + n + 1

)
(n + 2)(n + 1)

+ θ

(
n
x

)(
B(x + α, n − x + β)

B(α, β)

)
, (3)

where x and n are integers such that 0 ≤ x ≤ n and B(·, ·) is the Beta function. Also we have
α > 0, β > 0, v ∈ [0, 1], and θ ∈ [0, 1] as for the tilted beta distribution. Plots of the PMF of the
tilted beta-binomial distribution with n = 50 appear in Figure 1.

Figure 1: Examples of Tilted Beta-Binomial Distributions
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This distribution has closed-form moment expressions for the expected value and variance.
Regarding the expected value, we have

E(x) = n
(
(1 − θ)

v + 1
3

+ θ
α

α + β

)
(4)

while for the variance we may first find

E(x2) = n
(
(1 − θ)

2nv + n + 1
6

+ θ
α(n + nα + β)

(α + β)(α + β + 1)

)
. (5)

5



Noting that the variance is E(x2)− E(x)2 we observe the variance is expressible in closed form as

Var(x) = n
(
(1 − θ)

2nv + n + 1
6

+ θ
α(n + nα + β)

(α + β)(α + β + 1)

)
− n2

(
(1 − θ)

v + 1
3

+ θ
α

α + β

)2

. (6)

Higher moments can be obtained from the moment generating function which is described in the
next section.

3.3 The Beta Rectangular Binomial Distribution and Previous Literature

As mentioned, the beta rectangular distribution is a special case of the tilted beta distribution
when v = 1/2. Here the tilting component is flat giving a rectangular or uniform distribution.
Accordingly the results for beta rectangular binomial distribution arise by making the substitution
v = 1/2 in the relevant formulas above. In particular, the PMF is

p(x|n, α, β, θ) =(1 − θ)

(
(1 − v)(n + x)− vx − 1

)
(n + 2)(n + 1)/2

+ θ

(
n
x

)(
Γ(x + α)Γ(n − x + β)Γ(α + β)

Γ(α)Γ(β)Γ(n + α + β)

)
. (7)

For completeness the mean and variance are, as in Cepeda-Cuervo and Cifuentes-Amado
(2020),

E(x) = n
(

1 − θ

2
+ θ

α

α + β

)
(8)

and

Var(x) = n
(
(1 − θ)

2n + 1
6

+ θ
α(n + nα + β)

(α + β)(α + β + 1)

)
− n2

(
1 − θ

2
+ θ

α

α + β

)2

. (9)

Further theoretical topics related to the definition of tilted beta-binomial regression models such as
possible choices of Bayesian priors, possible choices of link functions, and possible model compar-
isons using DIC (Spiegelhalter et al. 2002) can be found in Cepeda-Cuervo and Cifuentes-Amado
(2020).

3.4 The Tilted Binomial Distribution

Here we present additional results for the tilted binomial distribution. This is the first component
of the mixture in (3), namely

p(x|n, v) =
2
(
x(2v − 1)− nv + n + 1

)
(n + 2)(n + 1)

. (10)

The expected value and variance can be found with (10) or by setting θ = 0 in (4) and (6). In
particular they are

E(x) =
n(v + 1)

3
(11)

and

Var(x) =
n (2nv(1 − v) + n + 3)

18
. (12)
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For clarity we mention that the below foundational results of this section have not appeared in the
literature on the tilted beta-binomial distribution to date. We find the tilted binomial distribution’s
moment generating function (MGF) is

MTBN
X (t) =

et(n + 2)(v − 1)− (n + 2)ve(n+1)t + e(n+2)t(nv + 1)− nv + n + 1

(n + 1)(n + 2) (et − 1)2 , (13)

where TBN is used to indicate tilted binomial. By independence of the two components of the
mixture, the MGF of the tilted beta-binomial distribution is then

MTBB
X (t) = (1 − θ)MTBN

X (t) + θMBB
X (t), (14)

where MBB
X (t) is the MGF of the beta-binomial distribution. Generating functions for the beta-

binomial can be found in reference material (Johnson et al. 2005, ch. 6). The characteristic function
(CF) of the tilted binomial is

CTBN
X (t) =

eιt(n + 2)(v − 1)− (n + 2)ve(n+1)ιt + e(n+2)ιt(nv + 1)− nv + n + 1

(n + 1)(n + 2) (eιt − 1)2 , (15)

where ι is the unit imaginary number. The CF for the tilted beta-binomial follows by independence
of the two components of the mixture and the use of the CF for the beta-binomial.

We may also wish to use the CDF of the tilted binomial in certain contexts. The CDF is

P(X ≤ x) =

(
x(2v − 1) + 2n(1 − v) + 2

)
(x + 1)

(n + 2)(n + 1)
. (16)

Monte Carlo simulation from the tilted binomial distribution is another topic that does not
seem to have been examined previously. It can be accomplished by noting the compound nature
of the distribution. First, one simulates from the tilting distribution for a given value of v to obtain
a simulated p̃. Then one draws from the binomial with parameters n and p̃. The tilting distri-
bution itself can be specified as a mixture of a Beta(1,2) distribution and a Beta(2,1) distribution
with mixing weights (1 − v) and v respectively. Equivalently, the tilting distribution can be de-
composed into a mixture of two triangular distributions: one with a mode at 0 (left-triangular)
and the other at the mode of 1 (right-triangular). Stein and Keblis (2009) provide methods for
simulating various triangular distributions with support (0, 1) which can be applied to the tilting
distribution with support (0, 1) and known v. Five random draws from the uniform distribution,
u1, . . . , u4, will be required. The quantity t1 = min(u1, u2) will be a random draw from the left
triangular distribution. Similarly the quantity t2 = max(u3, u4) will be a random draw from the
right triangular distribution. Lastly a random draw from the tilting distribution, p̃, is created by
taking a draw from t2 with probability v and a draw from t1 otherwise.

4 Applications

4.1 Maximum Likelihood Estimation

To examine the utility of the tilted beta-binomial distribution, we apply it to data from the 2010
U.S. Census. In this data set, we extract data for the state of Maryland at the Census place level.
There are 518 Census places in Maryland. We denote x as the number of people indicating they
were both African-American and of one race in a Maryland Census place. We denote n as the
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Table 1: Maryland Data Set: Distribution Parameter Estimates and Log Likelihoods

Distribution α β θ v Log likelihood
Beta binomial 0.373 1.332 — — -3497.37
Tilted beta-binomial 0.534 5.125 0.787 0.792 -3475.71

number of people indicating they were of one race in a Maryland Census place. The total of x
for this extracted data set is over 1.5 million and the total of n is over 4.6 million. We fit the
beta-binomial distribution and the tilted beta-binomial distribution to this data set. Maximum-
likelihood estimation of distribution parameters was performed in Mathematica 8.0. Parameter
estimates appear in Table 1.

Figure 2: Proportion of African-Americans in 2010 Census Places in Maryland
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We examine model fit by the likelihood ratio test. The likelihood ratio test gives a value of
χ2 = 43.42 on 2 degrees of freedom (p < 0.0001), indicating that the tilted beta-binomial distribu-
tion provides a better fit than the beta-binomial distribution. However, as can be seen in (3), when
θ is at the boundary value of 1 the tilted beta-binomial distribution collapses to the beta-binomial
distribution. Since theory justifying the distribution of the likelihood ratio test involves parame-
ters being on the interior of the possible range as opposed to the boundary, the standard p value
is not correct. Self and Liang (1987) studied the large-sample behavior of the likelihood ratio test
under various kinds of boundary problems. Our case here corresponds to their Case 6 in that we
have one additional parameter of interest (θ) with possible true value on the boundary and one
additional parameter of interest (v) which has possible true value on the interior of the range. The
limiting distribution of the likelihood ratio test statistic is in this case a 50:50 mixture distribution
of a χ2 distribution with one degree of freedom and a χ2 distribution with two degrees of freedom
(Self and Liang 1987, p. 608). Since this mixture would produce an even smaller p-value than a
χ2 distribution with two degrees of freedom, the p-value reported above is conservative.

4.2 Bayesian Estimation

We may also use Bayesian methods and Markov chain Monte Carlo (MCMC) estimation to fit the
tilted beta-binomial model. It is well known that Bayesian methods may offer some flexibility and
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this flexibility can be used in estimation of tilted beta-binomial models. We provide four such
types in Section 4.2.1 below.

For MCMC it is preferable to work with a common re-parameterization of the beta distribution.
One transforms α and β to µ and ϕ by the relations

µ =
α

α + β
,

ϕ = α + β.
(17)

Here µ is the expected value of the beta distribution and ϕ can be thought of as a term in the pre-
cision or the ‘sample size’ of the beta distribution. In MCMC µ and ϕ will often be less correlated
in the posterior than will be α and β, plus they are more interpretable.

4.2.1 Types of Tilted Beta-Binomial Models

Four types (or parameterizations) of tilted beta-binomial models are illustrated in Table 2, only
one of which (Type A) has been discussed previously in the literature. The two vertical columns
express two different ways that the likelihood can be expressed. In the column entitled Marginal-
ized Likelihood, we have used the likelihood where the underlying distribution has been explicitly
integrated out. For example, if x follows a Binomial(n, p) distribution, and p itself has a tilted beta
distribution as in (1), then the marginal distribution of x is the tilted beta-binomial distribution (3)
which has been abbreviated to fTBB. To make the Table more compact, we omit reference to the
parameters of the tilted beta-binomial distribution in the Table and instead refer the reader to (3).
We may then specify priors for the parameters in (3) for a Bayesian model (reference to the priors’
parameters will be discussed later).

However, it is not necessary that this integration be performed explicitly. Bayesian hierarchical
models capitalize on the fact that a distribution may be placed on a parameter in the likelihood,
and then at another level another distribution may be placed on parameter on the distribution just
mentioned. It is common to refer to these higher level distributions as hyperpriors (e.g., Clayton
1996). Here we slightly different words for the purposes of clarity in discussing the different types
of models in Table 2. We use the word ‘priors’ in the Table to refer to the distributions at the top
level of the hierarchy. These are the distributions for which the Bayesian must provide a certain
amount of his or her subjective input, such as his or her decision to use certain values to represent
prior information or non-informativeness. For the purposes of Table 2, subjective decisions about
‘priors’ in the Table are the same as the commonly discussed subjective decisions about Bayesian
prior specification. We use the word ‘hyperlikelihood’ as a compromise word to indicate that
the distribution is neither a likelihood or a ‘prior’ as defined above. Instead it is a distribution
that is one level above the likelihood in terms of a hierarchical model. Also, it is a distribution
of focus in the paper because the differences in the four types of models involve the likelihoods
(and the hyperlikelihoods if present). Readers who prefer a more hierarchical Bayesian way of
thinking may prefer to substitute the word prior for our hyperlikelihood and hyperprior for our
prior. These readers may also want to substitute the words hierarchical model for Conditional
Likelihood in the Table’s last column. We can now discuss the Type B model listed in the Table.
Here the likelihood of x is binomial. Next, p follows the tilted beta distribution as in (1). We
abbreviate the tilted beta distribution as fTB. Finally, specification of priors completes the Bayesian
model.

We also observe that the tilted beta-binomial distribution is a finite mixture model. This type
of model can be thought of in terms of having latent classes. Dempster et al. (1977) introduced
the EM algorithm and showed how it can be applied to many statistical contexts. In addition

9



Table 2: Four Types of Tilted Beta-Binomial Models

Marginalized Conditional
Likelihood Likelihood

Continuous Mixture Type A Type B
Likelihood: x ∼ fTBB Likelihood: x ∼ Binomial(n, p)

HyperLikelihood: p ∼ fTB
Priors Priors

Latent Class/‘EM’ Type C Type D
Likelihood: x ∼ f (1−z)

TBN f z
BB Likelihood: x ∼ Binomial(n, p)

HyperLikelihood: p ∼ f (1−z)
TB f z

B
z ∼ Bernoulli(θ) z ∼ Bernoulli(θ)

Priors Priors

they described a method for estimating finite mixture models that involves a certain change to the
likelihood function. Suppose we have two components to the mixture and the two components
have densities f1(ω1) and f2(ω2), where ωj is a parameter vector for jth density. Then Dempster
et al. (1977, pp. 15–16) write the likelihood function for the ith observation as

f1(ω1i)
1−zi f2(ω2i)

zi (18)

where zi is an unobserved or latent Bernoulli variable. Upon taking logarithms this simplifies to
either log ( f1(ω1i)) if z1 = 0 or log ( f2(ω2i)) otherwise. Using the notation of this paper, we can
specify that the latent zis depend on a mixing Bernoulli parameter θ. In Bayesian modeling we
can use the Gibbs sampler to estimate the latent z vector (Gelfand and Smith 1990, McLachlan
and Krishnan 1997) conditional on θ. This strategy is known as data augmentation (Tanner and
Wong 1987). Zaslavsky (2003) describes data augmentation as the converse to marginalization: the
increase in the number of the parameters enhances tractability and creates simplifications in the
model. Here we have the Type C model of Table 2 based on the latent class conceptualization. For
completeness we can provide the model labeled Type D in the Table. This model has a binomial
likelihood but the hyperlikelihood has a Dempster et al. (1977) latent class formulation. It would
be possible to create additional variations of the above models. For example, in Section 3.4 we
discussed how the tilting distribution can be thought of as a mixture of triangular distributions or
as a mixture of beta distributions. We leave such variations to future research.

We estimate the four types of models from Table 2 using the Maryland data set above. We pa-
rameterize the beta component of the models in terms of µ and ϕ as described at the beginning of
this section. For completeness we also provide results for α and β by estimating these parameters
during the MCMC run. Uniform priors on (0,1) were used for µ, θ and v. A uniform (0,100) prior
was used for ϕ. For Type C and D models, the latent z parameters were given a Bernoulli(θ) prior.
After a 5000 iteration burn-in, posterior estimates were based on 200,000 iterations of the Markov
chain. Table 3 displays the results. For clarity we point out that Type B, C, and D models have not
appeared in the literature. We see that the posterior means are all very similar, with some slight
differences apparent in the estimates of ϕ. These differences in ϕ translate to slight differences in
the estimates of β.

We may also calculate the Monte Carlo (MC) standard errors for the parameters for the differ-
ent types of models. These are displayed in Table 4. As we might expect, the Type A model has
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Table 3: Maryland Data Set: Bayesian Parameter Estimates by Model Type
Para- Posterior Means Posterior Standard Deviations
meter Type A Type B Type C Type D Type A Type B Type C Type D
α 0.544 0.544 0.544 0.544 0.045 0.045 0.045 0.045
β 5.911 5.925 5.915 5.906 1.336 1.372 1.352 1.348
µ 0.087 0.087 0.087 0.087 0.013 0.013 0.013 0.013
ϕ 6.454 6.469 6.458 6.450 1.365 1.402 1.381 1.378
v 0.648 0.647 0.647 0.648 0.191 0.192 0.192 0.192
θ 0.746 0.746 0.746 0.746 0.057 0.058 0.057 0.057

the lowest MC error due to the fact that the mixing distribution has been explicitly integrated out.
Model Type B has somewhat greater MC error. Separate calculations on greater precision numbers
indicate that Type B has about 11% greater MC error than does Type A averaging the bottom four
parameters in the Table. Recall that the first two parameters in the Table, α and β, are transforma-
tions of estimated parameters µ and ϕ. Hence these two parameters have been excluded from the
computation of the average MC error to eliminate redundancy. For Type C, the average MC error
is approximately 50% greater than that of Type A on average when including only the bottom four
parameters of the Table. Model Type C has 518 latent Bernoulli variables that are also estimated
along with the parameters in the Table. The uncertainty of these parameters propagates to the
parameters shown in the Table. Finally Type D has the highest average MC error. However, the
average MC error for Type D is only about 4.5% larger than that of Type C. In summary the con-
ditional likelihood approaches of Table 2 have slightly larger MC errors than their marginalized
likelihood counterparts. By comparison, moving to a latent class formulation with unobserved z
variables can increase MC error noticeably when number of trials is substantial as in the current
data set.

It is customary in Bayesian modeling to present model fit indices such as DIC (Spiegelhalter
et al. 2002) and the effective number of parameters for DIC, pD, or WAIC (Watanabe 2010) and
pWAIC, when presenting results such as in Table 3. However, all four Types of model displayed are
conceptually equivalent to one another so the issue of which one fits “best” is not easily answer-
able. Indeed, differences in model structuring are known to lead to differences in the values of
DIC. This issue causes concern for some authors (Smith 2002) while others describe this as versa-
tility (DeIorio and Robert 2002). As observed by Smith (2002), comparison of DIC for our different
Types of models is unlikely to be meaningful as they correspond to separate types of prediction
problems. Here the effective number of parameters will include contributions from zi for Types
C and D. These will increase with the sample size, potentially making the effective number of
parameters considerably greater for these model Types. Given the above, we have omitted these
measures from Table 3. Nonetheless it is possible to see whether the tilted beta-binomial model
fits better than a beta-binomial model. For the Type A tilted beta-binomial model, we found DIC
to be 6958.15 (pD = 3.150) and WAIC to be 6958.47 (pWAIC = 3.447). A marginalized (Type A)
beta-binomial model was created with the same Uniform (0,1) prior for µ and Uniform (0,100)
prior for ϕ. We used 5000 iterations for burn-in and 200,000 iterations for estimation. We found
DIC to be 6998.72 (pD = 1.988) and WAIC to be 6998.81 (pWAIC = 2.060) for the beta-binomial
model. The large differences in DIC and WAIC suggest the tilted beta-binomial model fits better
than the beta-binomial model in this dataset.

In summary Type A appears to be the most attractive for reducing MC error in the current
dataset. We may therefore wonder if Type B is needed since Type B appears to be less competitive
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Table 4: Maryland Data Set: Monte Carlo Error Estimates by Model Type

Posterior Means
Parameter Type A Type B Type C Type D
α 0.0002 0.0003 0.0003 0.0004
β 0.0138 0.0158 0.0195 0.0212
µ 0.0001 0.0002 0.0002 0.0002
ϕ 0.0140 0.0161 0.0198 0.0215
v 0.0018 0.0019 0.0028 0.0028
θ 0.0006 0.0006 0.0009 0.0009

than Type A. However, if it is necessary to calculate the CDF of either observed values of x or of
predicted values of x, then Type B may be more attractive than Type A especially as the values of
x increase. The CDF of the binomial distribution is readily computed by most statistical packages
and can be easily programmed elsewhere using the incomplete and the complete beta functions.
The CDF of the tilted beta-binomial distribution is less attractive to compute. We have found an
exact expression for its CDF, but it is cumbersome and involves regularized generalized hyperge-
ometric functions in the beta-binomial component. The Type A CDF could instead be found by
resorting to brute force evaluation and summation of probabilities but again the simplicity of the
Type B CDF may be more attractive. The CDF will be needed in certain situations such as the ex-
istence of truncated data or the calculation of exceedances. Type C and Type D have even greater
MC errors. Still these models can be attractive when we wish to model θi as a function of other
explanatory values. We now turn to an example of this.

4.2.2 Bayesian Modeling of θi

We may expand a Type C or a Type D model by allowing θ to vary over observations, θi, and
adding the following predictive specification.

zi ∼ Bernoulli(θi),
logit(θi) = a0 + a1w1i + . . . + akwki, (19)

a0, . . . , ak ∼ Normal(·).

Here w1, . . . , wk are observed predictor variables, a0, . . . , ak are coefficients to be estimated and
Normal(·) indicates a normal distribution with the user’s choice of prior mean and prior preci-
sion. Possible variations of (19) include using an alternative link function such as the probit link,
different priors for a0, . . . , ak, and other changes. We re-estimate the Type D model of Table 3 using
(19). There are many variables we might use to predict θi including the relative counts of another
demographic variable or else geographical aspects of the Census place. For simplicity we suppose
that more populated places might have a different probability of being in the beta-binomial com-
ponent versus the tilted binomial component of the mixture. We therefore use the logarithm of ni
as our predictor variable w1. This variable was centered around its mean. We used normal dis-
tributions with means of zero and precisions of 0.04 as priors for a0 and a1. All other priors were
as before. Estimates were based on 200,000 iterations of the Markov chain after 5000 iterations of
burn-in. Table 5 contains the parameters estimates for the two models.

The Table shows that v has changed noticeably after the introduction of the predictor for θi.
Without the predictor, v is larger with a posterior mean of 0.648. This value indicates a positively
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Table 5: Parameter Estimates in Two Type D Models

Type D without predictor Type D with predictor
Parameter Mean SD 95% CI Mean SD 95% CI
α 0.544 0.045 (0.462, 0.640) 0.581 0.066 (0.462, 0.722)
β 5.906 1.348 (3.958, 9.165) 14.150 2.792 (9.460, 20.390)
µ 0.087 0.013 (0.060, 0.112) 0.040 0.005 (0.031, 0.051)
ϕ 6.450 1.378 (4.443, 9.768) 14.730 2.841 (9.954, 21.070)
v 0.648 0.192 (0.303, 0.978) 0.176 0.046 (0.093, 0.273)
θ 0.746 0.057 (0.623, 0.839)
a0 0.079 0.222 (-0.361, 0.512)
a1 -1.151 0.145 (-1.459, -0.891)

inclining tilt that favors larger values of p being more probable. In addition v has noticeable
uncertainty as shown by its standard deviation of 0.192. When the predictor is added, v changes
to 0.176 which indicates a declining tilt. The standard deviation of v also becomes much smaller
(0.046). The 95% posterior credible intervals (CIs) for v in the two models, (0.303, 0.978) and
(0.093, 0.273), do not overlap. While this observation does not constitute formal model comparison
and while there are other ways of assessing the magnitude of the parameter difference such as
embedding both models into a meta-model and estimating the difference directly, it does provide
some preliminary evidence that the predictor for θi has had at least a modest impact on other
parameters. A similar set of observations can be made about µ and ϕ. For example, ϕ becomes
larger (i.e., the beta component becomes more precise) in the model that has the predictor for θi.
Also at the informal level we can see the 95% CIs for ϕ do not overlap.

We can examine model fit somewhat less informally using the deviance since both models are
the same type. We find that the model with the predictor in Table 5 has a somewhat smaller value
of WAIC (WAIC = 4065.3, pWAIC = 252.36) indicating improved model fit compared to the model
without the predictor (WAIC = 4069.8, pWAIC = 254.73). We also find that the model with the
predictor has a somewhat smaller value of DIC (DIC = 4162.5, pD = 445.97) indicating improved
model fit compared to the model without the predictor (DIC = 4163.8, pD = 446.46). Notice that
the difference in DIC is not as large and so the evidence is weaker. However, DIC may be affected
by parameter skewness. Most of the parameters in Table 5 have noticeable amounts of skewness.
Given the above, the values of WAIC may be more useful since they take into account the entirety
of the posterior distributions including skewness.

We now turn to a discussion of the coefficients in the predictor for θi. We begin by mentioning
that the number of people of one race living in a Census place in Maryland during the 2010 US
Census varies widely depending on the Census place. At the large end, Baltimore city had over
608,000 people in this category while the second most populous Census place was Columbia with
less than 100,000 people. At the minimum, Port Tobacco Village town had less than 20 people of
one race. Taking the logarithm of ni was beneficial for accommodating this wide range of values.

We find in Table 5 that the intercept a0 is not far from zero and its 95% credible interval in-
cludes zero. However, the a1 coefficient is farther from zero with a posterior mean of -1.151. The
95% credible interval for this parameter excludes zero by a large margin. We may regard this as
evidence that fit was improved when larger values of log(ni) were associated with smaller values
of θi. This means that Census places with relatively small numbers of people such as Port Tobacco
Village town tend to be allocated to the beta-binomial component of the mixture. Conversely
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Figure 3: Posterior Means and 95% Credible Intervals of θi in Type D Model
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Census places with relatively large numbers of people (such as Baltimore, Columbia, and Silver
Spring, MD) tend to be allocated to the tilted binomial component of the mixture. A plot of the 518
posterior means of θi appears in Figure 3. Figure 3 also displays splines fit to 2.5% posterior quan-
tiles of θi and to the 97.5% posterior quantiles of θi with dashed lines for better readability. Since
the median number of people in a Maryland Census place is not especially large (about 2200), we
may wish to see if this asymmetry justifies the use of an asymmetric link function for the predictor
such as the complementary log-log link. One benefit of the Type D (and C) model is that choices
of link functions can be explored. We therefore re-estimated the Type D model using the specifi-
cation of (19) but with the logit link being replaced with the complementary log-log. Interestingly,
this change did cause the 95% credible interval for a1 to exclude the value of zero. However, the
model fit measures (WAIC = 4068.11, DIC = 4164.1) showed that this change decreased model fit
overall.

4.2.3 Bayesian Modeling of µi and vi

It is also possible to provide a regression model for other parameters of the tilted beta-binomial
distribution. Possibilities include

logit(µi) = b0 + b1u1i + . . . + bkuki (20)

and
logit(vi) = c0 + c1t1i + . . . + cktki, (21)

where u1, . . . , uk and t1, . . . , tk are predictor variables and b0, . . . , bk and c0, . . . , ck are coefficients.
Again priors will be needed for b0, . . . , bk and c0, . . . , ck. We provide an example of (20) using the
current data set. We use the number of people in a Census place who were Asian and of one race
as a predictor. Due to the existence of large values and also values of zero, we took the logarithm
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Table 6: Parameter Estimates for Type D Model with Predictor for µi and θi

Parameter Mean SD 95% CI
ϕ 15.389 3.220 (10.237, 22.773)
v 0.358 0.100 (0.195, 0.588)
a0 0.747 0.237 (0.306, 1.235)
a1 -0.614 0.104 (-0.833, -0.424)
b0 -2.718 0.130 (-2.975, -2.466)
b1 0.269 0.025 (0.221, 0.321)

of 1 plus the number of people in a Census place who were Asian and of one race to be u1i. This
transformation closely approximates the logarithm of its argument for moderate to large values of
the argument but remains defined when the argument is zero as can happen here. This variable
was centered around its mean. We used normal distributions with means of zero and precisions
of 0.04 as priors for b0 and b1. All other priors were as before (except for the prior for µ which was
necessarily removed). Estimates were based on 200,000 iterations of the Markov chain after 5000
iterations of burn-in. Table 6 contains the parameters estimates for the two models.

The Table shows that the transformed independent variable u1i did predict the dependent
variable. The b1 coefficient is positive and its 95% posterior credible interval excludes the value of
zero. The posterior mean of b0 is -2.718. Table 6 shows that the posterior distribution of v has again
changed with the model extension. We see the posterior mean of v has increased to 0.358. We may
compare the model of Table 6 to the model that has a predictor in Table 5 We find that the current
model has a much better fit according to WAIC (WAIC = 4041.6 pWAIC = 246.1). Similarly we find
that the current model has a much better fit according to DIC (DIC = 4149.9, pD = 448.5). We briefly
consider the issue of prior sensitivity for ϕ. As an alternative prior, we refit the model using an
exponential distribution with rate parameter set to 0.02. We found the posterior distribution for ϕ
using this prior was similar to the posterior distribution for ϕ using the existing uniform prior.

4.2.4 Computational Issues in Practice

It may also be of interest to examine computational topics in this relatively underexplored distri-
bution. As an example we compare the run times for the models of Table 2 in Section 4.2.1. Here
we limit our observations to estimation in the WinBUGS software family. The tilted beta distri-
bution and the tilted beta-binomial distribution do not exist natively in WinBUGS, having been
described after WinBUGS’ initial creation. Fortunately there are methods for incorporating new
distributions in WinBUGS using special methods described in the software’s manual. We could
have recorded run times based only on these special methods. However the Type B and Type D
models use the binomial distribution which does exist in WinBUGS. Since the binomial distribu-
tion has obviously been compiled into WinBUGS internal code, it is reasonable to conclude that
the internal binomial distribution would be computed faster than would a special-method ap-
proach that would have to be computed at run time without prior compiling. This would have
skewed the timing results. We then considered using a special-method binomial distribution for
the Type B and Type D models. However, there is the issue of uncertainty about the effect of
multiple special-methods in one model and also about the generalizability of WinBUGS special
methods to other software environments.

We took the more labor-intensive route of using WinBUGS development tools to compile all
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likelihood and hyperlikelihood distributions of this paper into WinBUGS native code (WinBUGS
was written in a language called Component Pascal). For increased computational comparability,
we also compiled our own version of the binomial distribution into Component Pascal for use
in the timing runs. These compiled codes were then made available for WinBUGS to call. To
summarize, the timing tests used author-compiled versions of the binomial, tilted beta, and tilted
beta-binomial distributions. All of the parameters labeled as Priors in Table 2 made use of exist-
ing distributions in WinBUGS such as the uniform and normal distributions. Hence, they were
already computationally comparable and there was no need to write Component Pascal code for
them.

Runs were timed for 200,000 iterations after a 5,000-iteration burn-in was completed. We found
that the Type A model took about 19% more time to run than did the Type B model. We also found
that the Type C model took about 17% more time to run than did the Type D model. This gives ad-
ditional nuance to the decision process about model Type. At least in the WinBUGS environment,
the Type B and Type D models run faster than their marginalized counterparts. This means their
Monte Carlo errors could be potentially reduced by completing additional iterations in a certain
amount of time. As discussed in Section 4.2.2, the latent class formulation does have some useful
features mitigating against the longer run times. The slower run times of Types A and C are likely
due to the fact that these Types have likelihoods that are more computationally expensive to calcu-
late. Evaluating (3) is more computationally expensive than is evaluating the binomial likelihood
alone. In this dataset there are 518 likelihood terms to be evaluated per iteration. However in
Types B and D the expensive calculation of (3) only needs to occur once per iteration since (3) is a
hyperlikelihood in these model Types.

Additional information comes from a review of the effective sample sizes produced by the
200,000 iteration runs of the four model Types. The effective sample size (Plummer et al. 2006) at-
tempts to quantify the autocorrelated information content of the samples from the Markov chain
as if they were produced by independent sampling. Lower values are thus less attractive since ef-
fective sample sizes decrease as chain autocorrelation increases. The results appear in the first four
columns of Table 7 using our Maryland data set. Here we see the effects of increased chain auto-
correlation in Types B and D respectively versus Types A and C respectively. We also see that the
latent class formulations of Type C and D have lower effective sample sizes than the continuous
mixture Types A and B. The rightmost four columns of Table 7 are the effective sample sizes di-
vided by the amount of time in seconds of the respective runs. This gives the effective sample size
per unit of time (in seconds) of the four Types. In the previous paragraph we described the faster
run times of Types B and D. We see for example Type A µ estimation produced 2.496 effectively
independent MCMC samples per second but that Type B µ estimation produced 3.112 effectively
independent MCMC samples per second. We see that Type B has less attractive effective sample
sizes versus A when the run size is fixed (at 200,000 iterations here). However, its inexpensive
likelihood calculation makes it preferable in terms of a fixed run time since it is producing nearly
25% more effective samples per second for µ (and 20% to 35% more samples per second for the
other parameters). Types C and D look considerably less attractive in terms of overall effective
samples and effective samples per second. Type D is slightly preferable versus Type C in terms of
effective samples per second but the gap is narrower. To summarize, Types B and D may be worth
considering when the number of rows of data increases. Here we have 518 rows of data and Types
B and D are more attractive than Types A and C respectively. We would expect this performance
gap to increase in big data applications. However, for smaller data sets Type B and D may have
less attractive performance than A and C respectively.
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Table 7: Effective Sample Sizes and Effective Sample Sizes per Unit of Time by Model Type
Para- Effective Sample Sizes Effective Sample Sizes per Unit of Time
meter Type A Type B Type C Type D Type A Type B Type C Type D
µ 9724.9 7443.0 4180.6 3899.6 2.496 3.112 0.769 0.839
ϕ 9647.2 7094.6 4605.2 4011.9 2.476 2.966 0.847 0.863
v 12193.8 10073.6 4597.1 4323.6 3.130 4.211 0.846 0.930
θ 10342.4 8257.4 4097.5 3765.4 2.655 3.452 0.754 0.810

5 Conclusions

This paper provides an extensive treatment and many new results for the tilted beta-binomial
distribution, including its MGF and CF. We also discuss the newly-introduced Type B, C, and D
tilted beta-binomial models that may be considered for implementation in applied research. Of
course, the choice of which model type is best for a particular situation depends on which of
several factors is most important to the data analyst. The data analyst may consider whether he or
she is most concerned with minimizing MC error on a per-iteration basis, having a more tractable
CDF, or taking advantage of a latent class formulation. Accordingly we discussed the implications
of choice of model type with respect to these new considerations. Run time is another factor that
may be pertinent to a data analyst, and we examined this topic in detail. Simulation from the
distribution was also introduced to the literature.

The tilted beta-binomial distribution nests the beta-binomial distribution as a special case
when θ = 1 and the tilted binomial when θ = 0. We provided new results for the latter dis-
tribution. These special cases necessarily lead to the issues of hypothesis testing and model com-
parison. We discussed likelihood-based hypothesis testing of the tilted beta-binomial against the
beta-binomial in Section 4.1 (new to the literature), and Bayesian model comparison using DIC
and WAIC in Section 4.2. In the current dataset we found that the tilted beta-binomial distribution
was more appropriate than was the beta-binomial for the models considered here. We also discuss
predictive modeling of θ in Section 4.2.2.

The current paper also appears to be the first application of this distribution to ‘big data’.
The total sample size for the analyses was over 4.6 million distributed over a sample size of
518 binomial trials. We find evidence for the existence of both a beta-binomial component and
a tilted binomial component, which generates implications for decision makers seeking to better
understand latent statewide demographic trends for African-Americans, Asians, and other demo-
graphic groups. It would have been possible to use the dataset to examine other demographic data
such as age, education or other factors. We leave these analyses for future research. It would also
be possible to extend our estimation of a single parameter ϕ to a regression model where ϕi varied
over observations. Much of the above discussion would apply to this kind of extension. Since ϕ
exists on the space of non-negative real numbers, certain straightforward adjustments would be
needed. We also note that it is possible to perform likelihood-based model fit assessment of mix-
tures using parametric bootstrap techniques (Suesse et al. 2017). We leave this for future research.
In closing, the tilted beta-binomial distribution has potential to be a useful new tool in the analysis
of binomial data.
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Garcı́a C, Garcı́a Pérez J, van Dorp J (2011) Modeling heavy-tailed, skewed and peaked uncertainty phe-
nomena with bounded support. Statistical Methods and Applications 20(4):463–486
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