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Summary . In recent years, advances in Markov chain Monte Carlo (MCMC) techniques have
had a major impact on the practice of Bayesian statistics. An interesting but hitherto largely
underexplored corollary of this fact is that MCMC techniques make it practical to consider
broader classes of informative priors than have been used previously. Conjugate priors, long
the workhorse of classic methods for eliciting informative priors, have their roots in a time when
modern computational methods were unavailable. In the current environment more attractive
alternatives are practicable. A re-appraisal of these classic approaches is undertaken, and
principles for generating modern elicitation methods are described. A new prior elicitation
methodology in accord with these principles is then presented.
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1. Introduction

The Bayesian paradigm allows one to incorporate prior information into statistical models for deci-
sion making. This prior information is combined with information from the data using the axioms
of probability to yield posterior distributions for parameters of interest. Bayes’ rule can be written
as p(θ |y) ∝ `(y|θ)p(θ), which is to say that the posterior is proportional to the likelihood times
the prior. In recent years, advances in Markov chain Monte Carlo (MCMC) techniques have had a
major impact on the practice of Bayesian statistics (Berger, 2000). A great deal of this development
has resulted because MCMC techniques have made it practical to consider more complex models
than were employed previously. To date, researchers have focused extensively on how MCMC may
be used for problems in which the likelihood function is more complex. An interesting but hitherto
largely unexamined corollary is that MCMC techniques can make it practical to consider broader
classes of informative priors than have been used previously. That is, the same techniques that have
made the use of more complex likelihoods,`(y|θ), tractable for inference can be used to make more
complex priors,p(θ), tractable for inference. Since modern MCMC techniques allow for the devel-
opment of new classes of flexible informative priors, ample room exists for an echo of the MCMC
explosion in the area of research on informative prior assessment, specification and development.

In the following section, we review past research on methods of prior assessment. In Section 3,
we identify four principles that may be used to guide research on methodologies for specifying and
eliciting informative priors. In Section 4, we present a method which satisfies these principles. We
then illustrate the method with two examples in Section 5 and draw conclusions in Section 6.

2. Current practices for prior specification

In the practice of Bayesian statistics, one may use a non-informative or reference prior obtained by
formal rules such as a Jeffreys’s prior (Kass and Wasserman, 1996). This approach is useful for
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cases in which expert judgment is unavailable or not of interest. We may also wish to develop an
informative prior that incorporates historical information and/or expert judgment. Although there
are some earlier exceptions (e.g., Phillips and Edwards, 1966; Smith, 1967; Winkler, 1967), many
of the more recent works in this area have been designed to elicit what is known as a conjugate
prior (Raiffa and Schlaifer, 1961). In this approach, for the prior one selects a distribution that has
the same functional form as that of the likelihood. Then the decision task involves a determination
of which specific instance of this distribution appropriately represents the expert’s beliefs. The
advantage of this approach is that the work required of the statistician to obtain the posterior is
usually substantially reduced because the prior and the likelihood have the same form.

Nonetheless, it is well known that psychological phenomena may intrude into the process of
capturing an expert’s subjective probability distributions (Wallsten and Budescu, 1983), which may
potentially contaminate the results of the elicitation. So, in developing strategies for specifying
conjugate priors, researchers have recognized the importance of carefully eliciting an expert’s judg-
ments so that the translation from belief to a probability distribution is as accurate as possible. As a
result, a wide variety of procedures for eliciting conjugate priors have been developed. Procedures
are often designed for a particular setting or model, or reflect a particular philosophy. A brief re-
view of methods for eliciting conjugate priors provides an indication of the breadth in this area of
research and serves to identify key themes in the literature.

Stäel von Holstein (1971) described a method for assessing a conjugate prior for a Bernoulli
process. His technique for assessing beta distributions made use of estimates of the median and the
first and third quartiles of experts’ subjective probability distributions. Chaloner and Duncan (1983)
presented a method called predictive modal estimation in the context of assessing beta priors. Here,
the expert first provides an assessment of the mode of the distribution. Then he or she assesses the
likelihood of other points along the distribution relative to the likelihood of the mode. Chaloner and
Duncan argued that such a method is in accordance with the anchoring and adjustment processes
that people are known to use in their assessments of uncertainty. Inconsistencies in judgments were
resolved via a feedback mechanism in which judgments were respecified if they were inconsistent
with previously obtained ones. Kadaneet al. (1980) presented a method for estimating conjugate
priors for a linear regression model. Their method made use of the multivariatet predictive distrib-
ution which involved the assessment of belief about measures of central tendency for the regression
coefficients, as well as assessment of belief about variation/covariation and the appropriate value of
a degrees of freedom parameter. The necessary judgments were obtained by eliciting fractiles as
was done by Stäel von Holstein (1971). Winkleret al. (1978) have also considered the elicitation
of conjugate priors for the linear regression model using predictive distributions. Garthwaite and
Dickey (1988) likewise examined the linear regression problem but introduced a technique based on
the concept of points of constrained minimum variance. In this technique, certain values of the inde-
pendent variables are given to the expert. The expert is then asked to select values for the remaining
independent variables so that his or her uncertainty regarding the dependent variable is minimized.
A small number of fractile assessments are also required of the expert in this approach to complete
the elicitation of the subjective probability distributions. Carlinet al. (1992) presented an approach
for eliciting normal and inverse gamma priors in the context of random-effects logistic regression
models based on a series of problem-specific interrelated probabilistic considerations. The case
of modeling with ellipsoidal distributions is examined in Dickey and Chen (1985). Winkleret al.
(2002) advanced the use of beta priors assessed from fractiles in the context of the zero-numerator
problem. Finally, a software program that aids in the elicitation of the parameters of theν-Poisson
distribution is described in Shmueliet al. (2001). The software makes use of interactive graphical
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displays and automatically ensures elicited parameters obey consistency considerations.

A few key themes emerge from a consideration of these works. First among these is a desire
to simplify the judgment tasks in order to facilitate accuracy. A second theme is the use of feed-
back mechanisms to address inconsistencies as well as to improve accuracy. One type of feedback
mechanism automatically intervenes to prevent experts from making judgments that are formally
inconsistent with previously elicited information (e.g., Chaloner and Duncan, 1983; Shmueliet al.,
2001). Alternatively, feedback may occur in the context of a side-by-side review involving the ex-
pert and the statistician as to the accuracy and sensibility of the results obtained (e.g., O’Hagan,
1998). Another theme that emerges perhaps implicitly is a consideration of the implementation de-
mands that the method places on the statistician. The abovementioned methods were all designed
for eliciting informative conjugate priors, which historically have been more amenable to compu-
tation. By contrast, the literature on eliciting informative non-conjugate priors is not as extensive
(however, see Chaloner, 1996; Gelfandet al., 1995).

A final theme is the acceptance of an underlying assumption that some conjugate distribution
reasonably resembles the prior distribution held by the expert. There are undoubtedly many in-
stances where this assumption is not unreasonable and the assumption can be checked via sensi-
tivity analyses (e.g., O’Haganet al., 1992). Nonetheless, some have challenged the tenability of
this assumption (Chaloner, 1996; Gelfandet al., 1995). More importantly, the primary motivation
underlying the use of the conjugate approach typically centers on the computational benefits it pro-
vides, not whether it is necessarily the best representation of the expert’s beliefs (Kadane et al.,
1980). It is therefore quite possible in some cases that the task of the expert becomes one of satis-
ficing (Simon, 1957) given the particulars of the method. For example, Staël von Holstein (1971)
found some evidence of subjects trying to use distributions that were not in the beta family. While
some of these subjects may have been making mistakes, others may have had beliefs that were
inconsistent with a beta distribution. Moreover, some consistency-inducing feedback mechanisms
described above will prevent experts from making “mistakes”; however, methods that constrain re-
sponses to be consistent with what has been articulated previously are predicated on the assumption
that previously articulated beliefs are accurate. In such a method, an initial mistake may negatively
impact the remaining elicitations, despite an expert’s attempts at correction. Mixture priors (Dalal
and Hall, 1983; Diaconis and Ylvisaker, 1985) may be used to provide additional flexibility, but the
associated cost of decreased simplicity in the elicitation task may not be desirable.

To summarize, researchers have created many useful methods that capture conjugate priors from
the beliefs of experts by way of relatively straightforward elicitation processes. Without such meth-
ods and their concomitant consideration of the needs of experts, the experts would be burdened
with a substantial amount of additional complexity in articulating beliefs in a format suitable for the
construction of an informative prior. However, with the advent of MCMC techniques it is no longer
necessary to devise elicitation procedures that are confined to the realm of conjugate priors. Instead,
we can see that requiring elicited distributions to be conjugate is at best no longer necessary and at
worst possibly detrimental to one’s objectives. As such, we offer four principles that may be of use
in guiding the development of elicitation methodologies in the MCMC era.

3. Methodologies for informative prior elicitation: Four principles

A review of the research into the development of elicitation methodologies for informative priors
suggests the following principles may be useful for guiding these efforts.
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Principle 1: It is desirable for elicitation methodologies to produce distributions which are
flexible in form. Expert opinion is capable of taking on a wide range of possibilities and as such
methodologies should be flexible enough to accurately capture a wide variety of distributions repre-
senting expert opinion. For example, distributions representing expert belief may possess skewness,
heavy tails, or multiple modes. All other things being equal, elicitation methodologies should be
capable of generating distributions which possess properties such as these in order to be faithful to
expert opinion.

Principle 2: It is desirable to minimize the cognitive demands that an elicitation methodology
places on the expert.Research suggests that simpler probabilistic judgment tasks are more likely to
be accurately completed than are complex ones (Hogarth, 1975). Hence, tactics such as breaking
a complex judgment down into a series of more straightforward ones, or re-framing a question
in terms of more easily envisaged contexts are likely to be beneficial. We also would want to
consider addressing concerns about consistency among judgments. Requiring an expert to self-
impose perfect consistency among judgments while simultaneously rendering those judgments may
be unduly challenging. Rather, a method which handles consistency issues adjunctively to the
greater decision task may be preferable.

Principle 3: It is desirable to minimize the demands that an elicitation methodology places
on the statistician.The widespread use of conjugate techniques suggests that this is an important
concern. Methodologies which are cumbersome for the statistician to implement will be less attrac-
tive than those which are not. Hence, developed methodologies should lend themselves readily to
computational efforts.

Principle 4: All other things being equal, methodologies for prior elicitation which can be easily
applied to a wide range of models or scenarios may have some added desirability.The vast majority
of the methods mentioned in the above literature review were specifically tailored for a certain class
of model, or even a certain application. While it is desirable to have methodologies that are highly
focused on certain problems, it would also be attractive to have more general methodologies that
could be used in a variety of settings. Such approaches would minimize the need to invent and
validate elicitation methodologies on a case-by-case basis. For example, an approach that could
be applied to real-valued parameters, strictly positive parameters, and parameters existing on the
unit interval could save development work on the part of the statistician. Moreover, such a unified
approach might be helpful to the expert as only a single elicitation methodology needs to be learned.

4. Elicitation of informative priors: A nonconjugate approach

We describe here a methodology for eliciting a nonconjugate prior that is suitable for use with
MCMC methods. The goal is to construct a probability density function (pdf) or, loosely speaking,
a histogram for a single parameter of interest. Here division of the parameter space into intervals
each having an associated probability is needed to define a proper prior. Thus, consider partitioning
the parameter spaceΘ into k intervals (or “bins”). Denote theith interval asθi . In the first step,
the expert is asked to make a series of judgments indicating the relative likelihood or odds ofθ1 as
compared toθ j , where j = 2 to k. In this step we obtaink−1 odds ratios of the formO(θ1/θ2),
O(θ1/θ3), . . . , O(θ1/θ j) from the expert. In the second step, the expert is asked to provide a second
series of judgments indicating the odds ofθ2 as compared toθ j , where j = 3 to k. This process is
repeated by eliciting relative odds ratios for allθi andθ j , i < j, until the final judgmentO(θk−1/θk)
is elicited. This requiresk(k−1)/2 judgments from the expert. We may then construct a matrix
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of the relative odds ratiosθi/θ j . In constructing this matrix, we note thatO(θi/θi) is unity and
O(θ j/θi) = O(θi/θ j)−1. Let ξi, j equalO(θi/θ j) and write the matrixΞ = (ξi, j). Then, we may
obtain the underlying pdf by a method involving the Kullback-Leibler divergence. We begin by
noting that for a discrete distribution the directed divergence of Kullback and Leibler (1951) is

D(P,Q) =
I

∑
i=1

pi log

(
pi

qi

)
.

This is a measure of the divergence or distance between the distributionsP andQ. In particular, the
measure is known as the directed divergence as it is a measure of the information lost whenQ is used
to replaceP. It can also be described as a measure which quantifies the extent to which an observed
distributionQ approximates a true generating distributionP (McCulloch, 1988). The Kullback-
Leibler divergence has found substantial statistical application (e.g., Kullback, 1959; Soofi, 1994),
including the context of non-informative prior distributions (Jaynes, 1963). Here, it is used in the
context of forming an explicitly informative prior distribution from sets of judgments as follows.

Consider theith row of Ξ, which is(ξi,1, . . . ,ξi,k). Note that

φi =
1

∑k
j=1 ξ−1

i, j

(ξ−1
i,1 , . . . ,ξ−1

i,k )

is a distribution obtained from the expert’s judgments. As a small example, if

Ξ =




1 2 3
1/2 1 2
1/3 1/2 1


 ,

then for exampleφ1 = (6/11,3/11,2/11). Clearly we may obtaink distributions,φ1, . . . ,φk, from
the k rows of judgments inΞ. We are interested in finding the best approximation to the true
generating distribution for thek distributions inΞ. This is equivalent to finding the distributionp′
that minimizes the total directed divergence. In the present context,

p′ = argmin
p∈P

k

∑
i=1

D(P,φi).

We see that this distribution has the interpretation of being the best estimate of the expert’s underly-
ing distribution that generated the judgments inΞ. It can easily be shown that the elements ofp′ are

the geometric means ofφ subject to a normalization constantS. Specifically,p′j = S−1 ∏k
i=1 φ1/k

i, j

whereφi, j is the j th element ofφi andS= ∑k
j=1(∏

k
i=1 φ1/k

i, j ). The resulting pdf of these probabilities
is the prior distribution capturing the beliefs of the expert, which we may callp(θROR), whereROR
indicates the relative odds ratio method. We can see that this pdf is essentially nonparametric and
hence will be nonconjugate for any standard likelihood function. Berger (1985) describes the as-
sessment of priors by histograms, and as such can be seen to be a precursor to the method described
here. Note that the method will be robust to minor amounts of inconsistency in the judgments.
We have already seen that methods that constrain later responses to be consistent with earlier ones
are only sensible if the earlier responses are accurate. In practice it may be difficult to determine
which one of the elicited values is the source of the inconsistency. The above method can be used
to sidestep this difficulty, as conceptually a type of averaging over judgments is used to obtain the
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final probabilities. Note that the total directed divergence atp′ is an indication of the extent of
judgmental inconsistency inΞ. Specifically, the total directed divergence atp′ is

D∗(p′,φ) =
k

∑
i=1

k

∑
j=1

p′j log

(
p′j

φi, j

)
.

When all of theξi, j are cardinally consistent with one another (i.e.,ξh,i × ξi, j = ξh, j ), the total
directed divergenceD∗(p′,φ) will be zero; otherwise it will be positive. It is natural to consider
dividing D∗(p′,φ) by k to produce a scaled measure of inconsistency.

Several advantages accrue to the relative odds ratio prior methodology described above. First,
the task is straightforward for the expert. Second, minor inconsistencies in the expert’s judgments
are tolerated and it is not necessary to “fix” inconsistency by assuming that previous judgments are
correct and that subsequent judgments must conform to them. Third, the method is quite general and
may be applied for example to real-valued parameters, strictly positive parameters, and parameters
which exist on the unit interval. Hence, it is applicable to many types of modeling situations. Fourth,
it is easy to use the method to produce automated graphical output that can be used to provide
additional feedback to the expert. To be fair, a problem with this method is that tail areas may not
be included. For example, there may be a very small but non-zero probability that the parameter
takes on values above and below the range of the pdf. Two rejoinders may be offered, however. First,
the expert is free to continue adding intervals to the pdf until he or she is feels it has been sufficiently
well specified. Second, the use of a conjugate prior, while ensuring that tail areas are represented,
does not ensure that tail areas are represented reasonably accurately. For a variety of reasons, the
task of obtaining reasonably accurate estimates of very small tail-area probabilities is formidable
and perhaps ill-advised (Savage, 1971), despite the fact that failure to represent tail areas accurately
may have a substantial impact on the moments of the distribution (Berger, 1985). In using conjugate
priors it is probably impossible to determine whether a particular distribution’s decay toward the
asymptote reasonably reflects the person’s actual prior beliefs. Hence, the conjugate approach may
be said to have problems representing tail areas also.

4.1. Multiple parameters

One of the features of the method is that is straightforward to extend it to the case of multiple para-
meters, including that when parameters are not independent of one another. When two parameters
are dependent, the marginal distribution of one parameter,Θa, would be elicited as described pre-
viously. Then, the conditional distribution of the second parameter,Θb, would be elicited for each
interval of the parameter space ofΘa. Specifically, the expert would be asked to partition the pa-
rameter space ofΘb into m intervals. The expert would be prompted to consider the case when
Θa was fixed at itsith interval, i.e., to considerθa,i . Then, he or she would be asked to provide
the relative likelihood or odds ofθb,1 versusθb, j givenθa,i . This process would be repeated for all
intervals at which point the joint distribution would be obtained. The method can of course be sim-
ilarly extended to the case of more than 2 variables by the elicitation of the appropriate conditional
distributions. As the dimensionality of the problem increases, the time required of the expert will
increase. However, since the judgment tasks themselves are simple, the method remains relatively
practicable when the number of parameters is not too large.
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4.2. Non-uniform intervals
Another extension involves relaxing the notion that the probability density is uniform within each
interval. In particular, we may be willing to assume that the rate of change is approximately
linear across the interval, which itself is a relatively small portion ofΘ. If so, we may obtain the
expert’s belief by means of the following method. We may split the intervalθi at its midpoint
to obtainθ−i , the subinterval on the left, andθ+

i , the subinterval on the right. The expert may
then be asked to provide the relative odds regardingθ−i andθ+

i . Then, the probability densities
of both θ−i andθ+

i can be found from this information. We may then plot a line which has rise
equal to the difference in the probability densities ofθ+

i and θ−i and run equal to the length of
θi . In doing so, the rectangle formerly associated withθi will be replaced by a trapezium. Thus,
the expert’s prior will consist ofk trapezia as opposed tok rectangles. Finally, by subdividing an
interval into more than two sections, more complex forms could be elicited. For example, if an
expert were to feel that the middle portion of an interval was more likely than the endpoints, the
interval could be divided into four equal subintervals. Subsequent elicitations would produce a
pentagonal shape for the interval. This approach would be particularly useful where it was felt
that a broader interval could use adjustment. A distribution suitable for representing these kinds
of beliefs appears in the Appendix. Although the use of this approach is straightforward, a referee
has pointed out that increasingk may be a sensible alternative, particularly if linearity across the
interval seems implausible.

5. Examples

5.1. Inference about a proportion
A number of examples could be proposed due to the generality of the methodology. We present
two examples here that, while remaining simple, may be more suggestive of the variety of contexts
that may be handled by the method. Consider a situation in which a challenging computer systems
certification course is taught. It is of interest to determine the proportion,π, of students who obtain
at least satisfactory performance on a preliminary standardized exam that is administered. Expert
opinion exists with regard to this parameter and it is of interest to formally incorporate it into in-
ference onπ. In particular, the expert has observed that in a given class the proportion of students
with satisfactory performance on the exam is typically rather substantial. However, it is regularly
observed that for some classes the proportion of students with satisfactory performance is very low.
That is, there is a secondary mode at low values of the parameter.

After consultation with the expert, the pdf intervals were specified as follows:0 ≤ π < .2,
.2≤ π < .35, .35≤ π < .45, .45≤ π < .55, .55≤ π < .65, .65≤ π < .75, .75≤ π < .85, and
.85≤ π ≤ 1. The expert provided judgments of the relative odds ratios for the intervals, and a
judgment matrix was formed from these (see Table 5.1). The boldface entries in Table 5.1 are
the judgments supplied by the expert, while the remaining entries are derived from her judgments.
Note that the judgment matrix contains the relative odds ratios for a pair of intervals. For example,
consider the first interval and the second interval; the expert judged it was three times more likely
for π to fall in the first interval than the second.

The preliminary probabilities for each interval were obtained fromp′ which was computed from
the judgment matrix. Here, the probabilities for the intervals were .0738, .0375, .0620, .1179, .1715,
.2823, .1717, and .0834 respectively. Trapezia were elicited for the third, fourth, fifth, seventh and
eighth intervals. The respective odds ofθ+ to θ− for these intervals were 11/10, 5/4, 21/20, 20/21
and 5/8. Interval 1 was subdivided equally. For each subinterval a trapezium was elicited such that
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Table 1. Judgment matrix for π
Interval for θ j

Interval 0.0- .20- .35- .45- .55- .65- .75- .85-
for θi .20 .35 .45 .55 .65 .75 .85 1.0

0.0-.20 1/1 3/1 2/1 1/2 1/4 1/4 1/3 1/1
.20-.35 1/3 1/1 1/2 1/4 1/5 1/5 1/3 1/2
.35-.45 1/2 2/1 1/1 1/2 1/4 1/4 1/2 1/1
.45-.55 2/1 4/1 2/1 1/1 1/2 1/3 1/2 2/1
.55-.65 4/1 5/1 4/1 2/1 1/1 1/3 1/1 1/1
.65-.75 4/1 5/1 4/1 3/1 3/1 1/1 2/1 2/1
.75-.85 3/1 3/1 2/1 2/1 1/1 1/2 1/1 3/1
.85-1.0 1/1 2/1 1/1 1/2 1/1 1/2 1/3 1/1

the second trapezium was a reflection of the first, thus producing a pentagonal form. The odds ratio
for the left subinterval was 3/2 (and thus that for the right was 2/3). Like Interval 1, Interval 6 was
also subdivided and similar elicitations were performed to generate a pentagonal form. The odds
ratio for the left and right subintervals were 4/3 and 3/4. No further elicitations were performed for
the second interval. The value ofD∗(p′,φ)/k was .05, indicating the inconsistency in judgments
was low. Figure 5.1 displays the expert’s prior distribution.

Of the 18 students in the course, 12 obtained at least satisfactory performance on the exam.
Inference onπ was conducted via MCMC methods. The values from an initial burn-in of 1000
iterations were discarded, and posterior inference was based on a subsequent 20,000 iterations.
Given the straightforward nature of the model, convergence was almost immediate and the Markov
chain showed no evidence of poor mixing. Figure 5.1 also displays the exact posterior density
of π as well as a kernel density estimate based on the MCMC output. The posterior mean and
standard deviation ofπ were .667 and .084 respectively, with a 95% credible interval for the pa-
rameter ranging from .485 to .819. We may contrast these results with those of a ‘naive’ binomial
analysis utilizing the classical point estimate (π̂ = .667) and 95% confidence interval obtained via
π̂±1.96

√
(π̂(1− π̂))/n. Here, the 95% confidence interval ranges from .449 to .884. By contrast,

the credible interval is narrower due to the information supplied by the expert’s prior, particularly
with respect to higher values ofp.

5.2. Inference about a regression parameter
Lee (1997, p. 169) presented data on rainfall in York in the months of November and December
during the years 1971 through 1980. Interest centered on predicting the amount of rainfall in De-
cember (y) from the amount of rainfall in November (x) by means of simple linear regression. The
model can be expressed in the form

yi ∼ N(µi ,τ)

µi = α +β (xi − x̄),

whereN(·) denotes the Normal distribution. In this formulation,µi is the linear predictor at the
ith observation. Note thaty depends on bothµ andτ, whereτ is the reciprocal of the variance
of y and is referred to as the precision ofy. In turn, the linear predictorµ is a function of the
coefficientsα andβ as well as the independent variable,x. Lee mentioned in passing having a
prior belief that the amounts of rainfall in these two months would be positively correlated, i.e.,
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Fig. 1. Prior and posterior for π: the solid line is the exact prior, the dashed line is the exact posterior,
and the dotted line is the kernel density estimate of posterior.

that β > 0. However, no prior beliefs regardingα or τ were mentioned. Here, we re-consider
Lee’s analysis using vague priors forα andτ, and an expository relative odds ratio prior forβ .
For illustrative purposes, we suppose that Lee’s prior onβ ranged from−1 to +1 and was skewed
toward moderately positive values ofβ . Values outside the range−1 to+1 imply that small changes
in x will be accompanied by large changes iny, which seemsa priori unsupportable given the
forecasting challenges faced by meteorologists. Subsequently, the range ofβ was partitioned into
the intervals−1≤ β <−.5,−.5≤ β <−.1,−.1≤ β < .1, .1≤ β < .3, .3≤ β < .5, .5≤ β < .7,
and .7≤ β < 1. The probabilities for the intervals were subsequently obtained from the relative
odds ratio prior methodology, and their values were .068, .101, .138, .221, .285, .125, and .064. A
histogram of 20,000 simulated values from the prior appears in Figure 5.2.

For our analysis, posterior inference was based on 20,000 iterations after an initial burn-in of
1000 iterations. Again, convergence was almost immediate. Table 5.2 compares the results from the
current analysis with the results obtained by Lee under a non-informative prior forβ . We see that
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Fig. 2. Prior and posterior for β

under the informative prior the point estimate forβ is shifted somewhat in the positive direction.
Figure 5.2 shows the plot of the posterior density forβ . The effect of the informative prior is also
visible in Figure 5.2 where it can be seen that the right tail of the posterior is heavier than the left.

6. Conclusion

Bayesian statistics is predicated on the notion that the posterior distribution is proportional to the
likelihood and the prior. In the past decade, MCMC techniques have had a major impact on the
practice of Bayesian statistics. For the most part, these techniques have been used to conduct in-
ference in situations where the likelihood function exhibits some complexity. However, these same
techniques can be used to conduct inference using non-standard prior distributions, and there are
opportunities for further exploration in this area. For example, as pointed out by a referee, in the
method described here the geometric mean of the relevant values ofφ is not the only mechanism
by which a representation of the expert’s belief may be obtained. Other estimators which would
appear to be at least intuitively reasonable can be readily generated (e.g., the arithmetic mean of the
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Table 2. Regression parameter estimates
Informative Prior Non-informative Prior

Point 95% Credible Point 95% Credible
Variable Estimate Interval Estimate Interval

α 40.83 (30.6, 51.14) 40.81 (30.70, 50.90)
β -0.098 (-0.386, 0.192) -0.161 (-0.435, 0.113)
σ2 266.6 (89.64, 733.7) 192 (77.45, 705.6)

relevant values ofφ ). Here, minimizing the Kullback-Leibler divergence from the true underlying
distribution serves as a criterion by which one particular representation may be selected as having
desirable properties. We also see that a review of the literature strongly suggests that methods for
eliciting a more flexible class of priors can be an important part of a statistician’s toolkit. The four
principles outlined here should help to guide further research into the development of new methods
for eliciting informative priors. The methodology described here is consistent with these principles
and offers several advantages to both expert decision makers and statisticians.

Appendix

Here we describe the pentagonal distribution mentioned above. The pentagonal pdf is of the form

p(x|a,b,c) =





1
a+b

(
a+

2bx
c

)
if x < c

1
a+b

(
a+

2b(1−x)
(1−c)

)
if x≥ c

with 0≤ x≤ 1 wherea is associated with the height of the parallel vertical sides of the pentagon,
b is associated with the slope of the distribution’s “roof” andc is the mode. Clearly0≤ c≤ 1 in
order forc to be the mode. The trapezoidal distribution arises as a special case whenc is either 0
or 1. The cdf is useful for simulation purposes and can be shown to be

F(x|a,b,c) =





x
a+b

(
a+

bx
c

)
if x < c,

ax(1−c)−b(c+x(x−2))
(a+b) (1−c)

if x≥ c.

In the current context, we need to be able to assign values to the parameters of the distributions. For
a trapezoidal distribution, it is easy to show that the appropriate values fora andb are

a =
3O(θ−i )−O(θ+

i )
2
(
O(θ−i )+O(θ+

i )
) and b =

O(θ+
i )−O(θ−i )

O(θ−i )+O(θ+
i )

.

Using as an example the third interval’s trapezium from Section 5.1, we finda = .4524andb =
.0476. For a pentagonal distribution the values fora andb may be determined similarly using the
odds ratio for the left subinterval. In the pentagonal distributions considered here,c is always taken
to be1/2, although this could be changed if desired. Further discussion of a related category of
trapezoidal distributions and their generalizations appears in van Dorp and Kotz (2003).
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