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Abstract

A stochastic formulation of the Analytic Hierarchy Process (AHP) using an ap-
proach based on Bayesian categorical data models has been developed. However, in
categorical data models it is known that the selection of the link function may have an
impact on the model estimates. In particular, the selection of the probit link implies
an assumption that model error terms are normally distributed and this normality as-
sumption is regularly utilized in other related methods such as the multiplicative AHP.
We examine model performance with respect to the choice of two model link functions.
With regard to point estimates, it is found that the logit formulation is better able to
replicate the estimates obtained by the eigenvector decomposition associated with the
original formulation of the AHP. By contrast, the probit link produces priorities which
are consistently more moderate than those of the AHP. The results suggest that the
logit formulation will be preferred by decision makers who wish to replicate the AHP
priorities as closely as possible. The results also suggest that the unexamined use of
the normality assumption in other stochastic AHP methods may have an impact on
priority estimates and thus is worthy of further attention.

Keywords Analytic hierarchy process; Bayesian inference; Multivariate statistics;
Simulation.

1 Introduction

The Analytic Hierarchy Process (AHP; Saaty, 1977) is a methodology useful for multicrite-
ria decision making which has received substantial application (Vaidya and Kumar, 2004).
In the AHP, a decision maker provides his or her relative preferences for the various alter-
natives by way of a series of pairwise comparisons. From these judgments, a matrix of
pairwise comparisons is formed. Then, the priorities (or relative underlying weights) of the
alternatives are obtained via a deterministic method, the eigenvalue decomposition.
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As a simple motivating example, suppose a decision maker is to receive a reward, and
she may choose to receive either 4 ounces, 2 ounces, or 1 ounce of chocolate as her reward.
Assume that the decision maker’s value or utility for the alternatives is proportional to their
amounts. Let w1, w2, and w3 denote the underlying weights or utilities of the alternatives.
Also, let the pairwise comparison Cij equal wi/wj. Then, assuming that the decision maker’s
judgments are without error, the matrix of pairwise comparisons is




C11 C12 C13

C21 C22 C23

C31 C32 C33


 =




1 2/1 4/1
1/2 1 2/1
1/4 1/2 1


 .

The quantities in boldface in the matrix are the pairwise comparisons of the decision maker.
For example, four ounces is four times as preferable as one ounce, and so the top right entry
where Alternatives 1 and 3 are compared is 4/1. The diagonal consists of ones as for any
wi 6= 0, wi/wi = 1. The entries below the diagonal are the reciprocals of those above
it. Returning to the problem at hand, the priorities can be obtained from the normalized
principal eigenvector of the pairwise comparison matrix and here the priorities are 4/7, 2/7,
and 1/7 respectively. Thus, the decision maker should take the 4-ounce reward as it has the
highest priority.

The eigenvalue decomposition is a non-stochastic mathematical approach to deriving
priorities. In adopting it, error is assumed to be non-existent or negligible. This assumption
likely holds in very simple situations such as in the previous example. In many complex
real world decision problems, however, the true underlying weights of the alternatives are
far more difficult for a decision maker to assess. As such, we would expect the pairwise
comparisons to be subject to random error. Given this state of affairs, we might be interested
to know whether we can be reasonably confident that two priorities are truly different from
one another, or alternatively whether any differences might be attributable to random error.
We can see that a statistical approach could be helpful in answering our question. The
purpose of such a stochastic multicriteria decision making method is clear: to allow one to
make inferential statements on the elements of the priority vector.

As such, the development of probabilistic or statistical formulations of the AHP has at-
tracted considerable interest (e.g., Arbel, 1989; Basak, 1991, 1998; Crawford and Williams,
1985; de Jong, 1984; Genest and Rivest, 1994; Haines, 1998; Jensen, 1984; Lipovetsky and
Tishler, 1999; Ramanathan, 1997; Saaty and Vargas, 1987; Stam and Duarte Silva, 1997).
Some authors have obtained stochastic judgments by eliciting intervals for pairwise compar-
isons as opposed to point values (e.g., Bryson and Joseph, 2000; Sugihara, Ishii, and Tanaka,
2004). While useful, these methods require additional judgments from the decision maker
and thereby lack the efficiency of the original formulation of the AHP. Others have obtained
a probabilistic formulation by invoking a frequentist definition of probability and thereby
requiring some form of repeated sampling to occur. These methods are relevant when there
exists a group of decision makers so that sampling variability can be assessed across multiple
individuals. For example, Basak (2001) introduced a related method based on minimum
chi-squared estimation for large group decision-making. However, when the decision maker
is an individual or when the group of decision makers is small, these methods are not applica-
ble. The remainder are not able to address the fact that there is a high degree of dependence
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among relatively consistent pairwise comparisons. It is clear from the definition of cardinal
consistency, Cik = Cij × Cjk, that any one judgment is dependent upon the values of the
other two. Thus, approaches based on an assumption of independence among judgments
may be somewhat suspect, particularly in the context of inference.

In contrast to the above approaches, recently a stochastic multicriteria decision making
method has been developed that permits inference on the elements of the priority vector
without requiring interval judgments or multiple decision makers (Hahn, 2003). Moreover,
the approach easily allows for dependence among pairwise comparison judgments. This
stochastic judgment method utilizes the pairwise comparison matrices of the original AHP
and thus problems that have been examined with AHP may be examined without modifi-
cation using this method (e.g., Phillips-Wren, Hahn, and Forgionne, 2004). The value-add
of such a two-phase examination is that the latter method allows individuals to make infer-
ential statements regarding the priorities. This can be a powerful tool for decision makers.
The approach assumes that the underlying weights have a multinomial sampling distribution
such that the priorities may be estimated via multinomial logit models (McFadden, 1973).
Inference on the priority vector is obtained by the adoption of a Bayesian approach and the
use of Markov chain Monte Carlo methods.

2 Model Formulation

A brief review of the methodology is as follows. The pairwise comparison is stochastically
conceptualized in terms of its nature as counts of relative preference outcomes. This concep-
tualization naturally leads us to the binomial and multinomial distributions. We can explain
this with a simple example. Consider the case of a coin which has been flipped 6 times and
has come up heads 5 times out of the total. We may wish to examine the propensity of
this coin to exhibit the outcome of heads. A natural way of doing this is with the binomial
distribution. Using the binomial distribution, we may estimate p, the propensity of the coin
to exhibit a certain outcome. Here, the binomial likelihood

Pr(y|p, n) =

(
n

y

)
py(1− p)n−y

leads us to consider estimators of p. One estimator of p is the familiar estimator, y/n. Thus,
one might use this estimator and say our best estimate of the propensity for heads given
the observed pattern of results is 5/6. By extension, we may use this approach to examine
an expert’s propensity or preference for one of two outcomes. For example, the pairwise
comparison 5/1 indicates that on a relative scale the expert gives five outcomes of preference
for Alternative A for each one outcome for Alternative B. In the simple case of 2 outcomes,
again this process can be described by the binomial distribution. Specifically, the weights wi

and wj which are derivable from Cij can be shown to be subject to a binomial distribution
with parameter p. Here, our best estimate of the propensity for A would again be 5/6. In
the more general case of k outcomes where k > 2, the multinomial distribution

Pr(y1, . . . , yk|p1, . . . , pk, n) =
n!

y1! y2! · · · yk!
py1

1 py2

2 · · · pyk

k (1)
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is the relevant distribution and p is replaced by the vector p = (p1, . . . , pk). In (1) note that
n =

∑k
i=1 yi and

∑k
i=1 pi = 1.

In the method previously described, the judgment matrix may be transformed into a
multinomial data matrix having I rows and J columns of data1. Here, the jth column
contains the weights associated with the jth alternative. The ith row can be thought of as
the ith trial. However, the multinomial logit model is not the only model that can be used
for categorical data analysis. Note that in the case of binary response data, probit and logit
models are commonly encountered categorical data models. We review these models briefly
as they provide a useful reference point for the development later in the paper.

In binary response categorical data models, we define the linear predictor η as η = xβ
where β is the regression coefficient vector and x is the matrix of the predictor variables.
Then, the probit model can be written as Φ−1(p) = η, which is to say that η is mapped to the
probability of a response, p, by way of the inverse standard normal cumulative distribution
function, Φ−1(·). In this situation, Φ−1(·) is the link function, as it maps the linear predictor
onto the probability. Hence, we may think of a link function as a mapping function between
η and p. Similarly, the logit model is written ln(p/(1 − p)) = η. Here, the link function is
ln(p/(1− p)), which is the inverse of the logistic cumulative distribution function.

In the current context, it is useful to mention how the probit and the logit models can
be described in terms of a latent variable formulation (for a more detailed discussion, see
sections 3.3 and 7.5 of Powers and Xie, 2000). Imagine a simple choice situation between
alternatives A and B. We can assume that if the total utility for A exceeds that of B,
then A will be selected. Otherwise, B will be selected. Thus, in terms of our introductory
example we can write a difference in choice utilities, v, as v = wA−wB. Of course, we do not
observe this latent quantity directly, but rather we observe the preference-related outcomes.
Nonetheless, it seems sensible to assume this latent quantity or propensity exists. If we could
somehow observe this quantity, we could easily write a linear model for it as

v = xβ + ε (2)

such that the utility is equal to the linear predictor plus an error ε. However, we only observe
whether A or B is selected (i.e., whether wA > wB or wA < wB), namely

y =

{
1 if v > 0 (or wA > wB),

0 if v < 0 (or wA < wB).
(3)

When we take Expressions (2) and (3) together, we have the general framework for a cate-
gorical data model (Powers and Xie, 2000). If we assume that the error term for the latent
variable is normally distributed, the probit model is obtained. Conversely, the logit model
is obtained when the error is taken to have a logistic distribution.

The tails of the logistic distribution are considerably heavier than that of the standard
normal. It has been noted that the logistic distribution is related to a member of the family

1Note that the matrix is square and thus I = J , but it is useful to have a notation which distinguishes
between rows and columns.
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of t distributions. Specifically, Albert and Chib (1993) have indicated that the logistic is well
approximated by a t distribution with 8 degrees of freedom. Given the differences between
the logistic and normal distributions, we might expect that there may be instances where
the choice of link function impacts the analysis. Indeed, the performance of a categorical
data model is known to depend at least in part on the choice of the link function (e.g.,
Pregibon, 1980). Aside from the estimation considerations, the development of a probit
model in the context of stochastic multicriteria decision methods would be interesting as
in the literature several authors have invoked the normal distribution in the context of
extensions of the AHP. For example, the method of Ramanathan (1997) is based on an
assumption of normally distributed errors when there are a large number of decision makers
rendering judgments. Similarly, Van den Honert (1998) described a multiplicative AHP
approach in which the pairwise comparisons of multiple decision makers were assumed to
be normal (see also Van den Honert, 2001). Lipovetsky and Tishler (1999) assumed that
the underlying weights of the alternatives were normally distributed. They then utilized the
Cauchy distribution, a distribution which is obtained as the ratio of normal variates. Laininen
and Hämäläinen (2003) described a robust regression approach to priority estimation in
the multiplicative AHP where the logged pairwise comparison ratio is taken to be normal.
Indeed, the log-normal conceptualization of the pairwise comparison has appeared with
some regularity (e.g., Crawford and Williams, 1985; Escobar and Moreno-Jiménez, 2000).
Moreover, the multivariate normality of the normalized principal eigenvectors in AHP has
been assessed by Stam and Duarte Silva (1997).

In the previous section, the case of binary response models was discussed. However, in
the case of more than two alternatives we require a model which allows for polychotomous
outcomes. Categorical data models used to examine the choices of individuals in the presence
of polychotomous outcomes are sometimes termed discrete choice models (Ben-Akiva and
Lerman, 1985) and one of the most commonly used of these is the multinomial logit model.
One well known property of the multinomial logit model is that it implies an assumption that
the error terms are independent. When it is desirable to relax this particular assumption, the
multinomial probit model such as that of Hausman and Wise (1978) is sometimes used. In
the general multinomial probit model, the errors are assumed to have a J−1-variate normal
distribution, which relaxes the independence assumption. Thus, the general multinomial
probit model, while attractive, implies a qualitatively different error structure than does
the multinomial logit model. As such, it is not suitable for a direct examination of the
effect of link functions in the current context because the general multinomial probit model
is different from the multinomial logit in two aspects: the link and the (correlated) error
structure. However, by appropriately specifying the covariance matrix, we can obtain an
independent multinomial probit model with an uncorrelated error structure which is suitable
for comparison with the multinomial logit model. We describe this model in detail in Section
2.2.
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2.1 Model 1: Logit Link

Model 1 is a multinomial logit model and can be specified in the usual way as

wij ∼ Multinomial
( I∑

i=1

wij, pij

)
, (4)

pij =
φij∑I
i=1 φij

, (5)

φij = exp(αj + βij). (6)

Here, we see in (4) that the underlying weights of the decision maker are multinomially dis-
tributed such that they depend on the priorities as well as the sum of the weights. Also, we
see in (5) and (6) the inverse multinomial logistic link function which is exp(·)/(∑ exp(·)).
Moreover, a simple algebraic manipulation of (6) indicates that ln(φik) is linearly related
to the predictors αk and βik. Thus, we see the model is linear in the logs similar to the
multiplicative AHP. We discuss this relationship further in the next section. In Model 1,
the various α and β parameters are estimated simultaneously. We have in principle J α
coefficients to estimate, one for each of the J alternatives. For identifiability, however, it is
necessary to set one of these, say α1, to zero. Similarly, there are (I × J) β coefficients to
estimate. Again, we need to set all of the β1,j and βi,1 coefficients to zero to ensure identifi-
ability. Because x is a design matrix of zeros and ones, it need not appear explicitly because
the values of α and β are all intercepts specified by the design matrix. In the multinomial
logit model the distribution of the errors, εij, follows a type-I extreme value distribution
having cumulative distribution function F (εij < ε) = exp[− exp(ε)]. This distribution im-
plies that the random variable defined as the difference between two error terms follows a
logistic distribution. Recall that the difference in utilities, v, was used in the binary model
formulation in (2).

Model 1 is a marginal model and as such all of the coefficients are assumed to be indepen-
dent. In the Bayesian framework to be used, we need to provide a probabilistic specification
for all of the parameters to be estimated. Thus, we have

Pr(α2, . . . , αJ , β2,2, . . . , βJ,J) ∝
J∏

j=2

Pr(αj)×
I∏

i=2

J∏
j=2

Pr(βi,j). (7)

Here, we can see that the joint probability density of the parameters is the product of the
marginals and as such all of the parameters are independent. Hierarchical extensions of this
model have been considered (Hahn, 2003) but in the current research we examine only the
marginal formulation.

2.2 Model 2: Probit Link

We describe here a independent multinomial probit model to compare with Model 1. The
case of J = 3 is presented but the extension to greater values of J is straightforward.
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Following Maddala (1983), with three alternatives we have

u1 = η1 + ε1,

u2 = η2 + ε2,

u3 = η3 + ε3

where u is the latent utility for a particular alternative. The error terms (ε1, . . . , ε3) are
assumed to have a trivariate normal distribution with mean µ = (0, 0, 0) and variance-
covariance matrix Σ. Here,

Σ =




σ2
1 σ12 σ13

σ21 σ2
2 σ23

σ31 σ32 σ2
3


 .

The probability that, say, the first alternative is chosen can be written as Pr(u1 > u2, u1 >
u3). The dimensionality of the problem can be reduced from J to J −1 by differencing (e.g.,
Alvarez and Nagler, 1995). We may therefore write the probability of the first alternative
being chosen as Pr(η1 − η2 > ε2 − ε1, η1 − η3 > ε3 − ε1). Let η̄1j = η1 − ηj and ε̄j1 = εj − ε1.
The joint covariance matrix for the ε̄j1 is

Ω1 =

(
σ2

1 + σ2
2 − 2σ12 σ2

1 − σ13 − σ12 + σ23

σ2
1 − σ13 − σ12 + σ23 σ2

1 + σ2
3 − 2σ13

)
.

Then, the probability of alternative 1 being selected is

p1 =

∫ η̄12/
√

σ2
1+σ2

2−2σ12

−∞

∫ η̄13/
√

σ2
1+σ2

3−2σ13

−∞
f(ε̄21, ε̄31) dε̄21 dε̄31,

where f(·) is the standard bivariate normal distribution.

Analogously to Model 1, we see that Model 2 can be specified as

wij ∼ Multinomial
( I∑

i=1

wij, pij

)
, (8)

pi1 = Φ2(−ηi2,−ηi3; Ω1), (9)

pi2 = Φ2(ηi2, ηi2 − ηi3; Ω2), (10)

pi3 = Φ2(ηi3, ηi3 − ηi2; Ω3), (11)

where Φ2 is the bivariate standard normal cumulative distribution function. Here, the α
and β coefficients appear in the original values of η prior to differencing. Again, we see the
underlying weights are multinomially distributed conditional on the priorities. In (9)-(11)
the differenced linear predictors are used to obtain the priorities by way of the bivariate
normal link function. It can be shown (e.g., Hausman and Wise, 1978; Terza, 1998) that
in an independent multinomial probit model Ω after standardization has entries of 1 on
the diagonal and 1/2 elsewhere. Note that the off-diagonal elements of 1/2 result from the
differencing. Model 2 is also a marginal model and has the same general structure as in (7).
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Some characteristics of this model include the need to evaluate multidimensional normal
integrals repeatedly because of the use of Markov chain Monte Carlo (MCMC) methods
in the Bayesian framework adopted here. A number of Bayesian approaches to the model
are able to bypass this integration via Gibbs sampling (see Imai and van Dyk, 2004, and
references therein). However, we will need to perform this integration explicitly to obtain
the values of p. While in the past this kind of approach may have proven to be excessively
expensive computationally, with today’s computing power a model can be examined in a
reasonable amount of time.

It is instructive to compare Models 1 and 2 presented here to another well-known method
for estimating priorities, the multiplicative AHP. In the multiplicative AHP as well as in the
current approach, linear models are used to estimate priorities by utilizing pairwise compar-
isons which have undergone a transformation. In the multiplicative AHP, the transformation
is the natural logarithm whereas in the current models the transform is the logit transform
or the inverse multivariate normal cumulative distribution function. Thus, the multiplicative
AHP can also be seen to make use of a link or mapping function. The multiplicative AHP
appears to have originally arisen from the line-fitting tradition of minimum least squares
estimation (e.g., Lootsma, 1996), thus its stochastic characteristics were originally less ex-
plicitly presented. However, these considerations have been made more explicit over time
(Van den Honert, 1998; Laininen and Hämäläinen, 2003). By contrast the method here has
been explicitly derived from a stochastic characterization of the pairwise comparison as the
ratio of two kinds of preference outcomes. The pairwise comparison is therefore treated like
an odds ratio of preference outcomes. Among other things, in this approach the sampling
distribution of the priorities is immediately obtainable and inference regarding the priorities
is straightforward using MCMC. It should be noted that the models associated with the
stochastic judgment method such as Models 1 and 2 may be more computationally expen-
sive than are multiplicative AHP models. However, the statistical assumptions associated
with the multinomial distribution are possibly more easily met. The statistical specification
of the multiplicative AHP requires the logged pairwise comparisons to be independent and
identically normally distributed with constant variance (Laininen and Hämäläinen, 2003).
By contrast, in the stochastic judgment method, constancy of variance is never assumed
and dependence structures are easily incorporated into the model. For example, Model 2
can easily permit dependence to be estimated from the data via estimation of the covari-
ance parameters in Ω whereas dependence can be introduced into Model 1 via a hierarchical
formulation.

3 Monte Carlo Study

A more comprehensive understanding of the performance characteristics of the two different
kinds of models can be obtained from a Monte Carlo study involving the two models. Thus, a
study was conducted as follows. The main factor of interest was the effect of the link function.
As such, the underlying priorities were estimated using the multinomial logit model of Sec-
tion 2.1 and then were separately estimated using the independent multinomial probit model
of Section 2.2. In addition to the link function, we examine the performance of the models
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with respect to the number of alternatives. Here, pairwise comparison matrices having ei-
ther 3 or 4 alternatives were considered. Within each of these two conditions, 20 pairwise
comparison matrices were randomly generated. One important characteristic of these pair-
wise comparison matrices was the amount of judgmental inconsistency as measured by the
consistency index (CI; Saaty, 1977). The pairwise comparison matrices utilized here were
generated to have a CI such that CI ≤ 0.10. The CI ≤ 0.10 criterion is commonly utilized
to determine whether a pairwise comparison matrix has an acceptable level of consistency.
A second way in which pairwise comparison matrices may differ involves the dispersion of
the priorities. If the priorities are widely dispersed, some alternatives are considerably more
preferable or important than others. That is, certain alternatives will strongly dominate
others. Conversely, if the dispersion is minimal, all the alternatives have relatively similar
aggregate underlying weights. Here the dispersion of the priorities was measured by calcu-
lating their standard deviation. In summary, a factorial design was employed in the Monte
Carlo study which had a 2 (link function) × 2 (number of alternatives) structure with 20
pairwise comparison matrices observed in each cell. The CI and dispersion of the priorities
were also recorded for use as continuous covariates.

In the Bayesian framework, it is necessary to place priors on model parameters. Here,
very flat normal priors were used for all α and β regression coefficients as non-informative
priors. Specifically, the normal priors utilized had mean zero and variance 1,000,000. Thus,
the priors were flat across all reasonable values of the model parameters. For each model,
a burn-in period of 1,000 iterations of the Markov chain was used. This burn-in period
allows the Markov chain to move from initial parameter values to its final distribution.
Here, the initial values were set to be zero. Due to the nature of both multinomial logit and
probit models in the context of stochastic multicriteria decision making problems, parameter
posterior distributions regularly either include zero or are very close to zero. Therefore, a
burn-in period of 1,000 iterations was conservative in that it was more than sufficient to allow
the Markov chain to reach its final steady state. The Markov chain was then monitored for an
additional 50,000 iterations. These iterations were used for inference. In general, estimation
of these models is straightforward and as a consequence the Markov chains were well-behaved.

In the current work we focus on the point estimation problem as interval estimation
has been addressed in previous research. We compare the model priority estimates to the
AHP priorities and quantify the differences between them using the mean absolute deviation
(MAD). For each judgment matrix, the discrepancy between the estimated priorities and
the priorities obtained from AHP was summarized by using the MAD between the two
sets of priorities. Figure 1 contains plots of the models’ discrepancies as a function of
the CI. The plots reveal clearly that as inconsistency increases, the discrepancy between
the estimated priorities and the AHP priorities likewise increases. Still, we see that there
are some differences. For example, the first row of Figure 1 shows that the discrepancy
level between Model 1 and AHP is comparatively lower whereas the second row shows that
the discrepancy level between Model 2 and AHP is comparatively higher. More precise
conclusions may be gained by examining the data using a regression approach. Thus, Table 1
contains summary statistics from regressions of CI on MAD for the four models2. In addition

2Note that Bayesian and OLS regression coefficients are identical under flat priors.
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to the coefficients, we also present in Table 1 the standardized slopes. These quantities
provide a common basis for discerning whether a slope is large relative to its standard
error and moreover are the t statistics used in classical hypothesis testing. Table 1 shows a
relatively prominent difference in the intercepts. The Model 1 intercepts are approximately
zero whereas the Model 2 intercepts are considerably larger (.0055 and .009). This indicates
that under the logit link with perfect or nearly perfect consistency the model estimated
priorities recovered the AHP priorities almost exactly. However, under the probit link we
obtain estimates that are considerably different from the priorities from AHP, even when
judgments are perfectly consistent. This evidence suggests that an assumption of normality
of errors in stochastic multicriteria decision models may lead to estimates that are somewhat
divergent from those of AHP. This seems to suggest that an assumption of normality of
errors is not consonant with the priorities of AHP, or conversely that the priorities of AHP
are not consonant with an assumption of normality of errors. Table 1 also shows that values
of the slopes are roughly comparable across the different models and different numbers of
alternatives. For a .01 increase in CI the MAD would be expected to increase by between
.00052 to .00071. This indicates that as inconsistency increases, the discrepancy between the
model estimated priorities and the AHP priorities increases at an attenuated rate. Finally,
Table 1 shows the values of MAD0.1, the predicted MAD at the maximum CI of 0.1. We
see from the values of MAD0.1 that the discrepancy between the AHP priorities and the
estimated priorities is approximately twice as large under Model 2 as it is under Model 1.
Phrased differently, in a worst case scenario of high inconsistency, Model 1 is predicted to
be half as discrepant from AHP on average as Model 2 under the MAD criterion.

Table 1: Regression Coefficients for Discrepancy versus CI

Alternatives Intercept Slope Slope/S.E. MAD0.1

Model 1 3 0.0004 0.0615 13.39 0.0065
4 0.0000 0.0712 5.32 0.0072

Model 2 3 0.0090 0.0517 2.32 0.0142
4 0.0055 0.0603 2.55 0.0115

We now examine model performance with respect to dispersion of the priorities. Recall
that if the priorities are widely dispersed, there are some alternatives that are judged to be
particularly preferable and others that are judged to be particularly undesirable. Conversely,
if the priorities are all very similar to each other in magnitude, then the alternatives are
judged to be approximately equally preferable. Dispersion is quantified here by taking the
standard deviation of the priorities generated by AHP as the dispersion metric. Figure 2
displays plots of the MADs as a function of the dispersion metric. The figure clearly shows
that the slopes for Model 2 are more pronounced than those of Model 1. Incidentally, Figure
2 also shows that as the number of alternatives goes up, the standard deviation of the
priorities tends to go down. This is due to the fact that the priorities must sum to one. For
example, consider the case where one alternative is strongly preferred to the remainder. As
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Figure 1: Discrepancy and Judgment Matrix Consistency
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the number of alternatives J increases, the J −1 alternatives which are not preferred cluster
near zero thereby shrinking the standard deviation of the priorities.

Table 2 contains summary statistics from regressions of priority standard deviation on
MAD for the four models. The table shows some variability in the intercepts. The Model
1 intercepts are negative while the Model 2 intercepts have both signs. The intercepts the-
oretically have a useful interpretation as the expected MAD when the priorities are equal
(giving a standard deviation of zero). However, the intercepts are more difficult to interpret
reliably here as the bulk of the data lies away from the origin. Table 2 confirms that the
slopes are more pronounced in Model 2 than in Model 1. This indicates that when the pri-
ority standard deviation decreases, the Model 2 priorities approach the AHP priorities at a
faster rate than the Model 1 priorities. Conversely, as standard deviations increase, Model 2
priorities diverge from those of AHP faster than do the Model 1 priorities. Because none of
the randomly generated judgment matrices had standard deviations close to zero, there is a
risk of overinterpreting the results. However, the results suggest that the assumption of nor-
mal errors may yield estimates consonant with AHP when all alternatives are approximately
equally preferable. Conversely, AHP may generate priorities consonant with a normality of
errors assumption when all alternatives are essentially equally preferable.

The MAD is useful for examining the discrepancies between the priorities of AHP and
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Figure 2: Discrepancy and Priority Standard Deviation
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those of Models 1 and 2. However, a more detailed examination of the nature of the discrep-
ancies is possible using an appropriate metric. As a point of departure, we note that Stam
and Duarte Silva (2003) found the multiplicative AHP had a moderating effect on priorities
compared to the original AHP. That is, for a given set of judgments the priorities produced
by multiplicative AHP tended to be more distant from the extremes of 0 and 1 than were
the priorities of the original AHP. We develop here an comparative measure of extremity
and use it to examine the priorities from Models 1 and 2. Denote the AHP priorities as p̃
and the priorities of Models 1 and 2 as p̂. Then a mean extremity index can be defined as

κ =
1

J

J∑
j=1

(
(p̃j − p̂j)× sgn(p̃j − ¯̃p)

)

where ¯̃p is the mean of the AHP priorities and sgn(·) denotes the signum or sign function.
Here, ¯̃p is used as a measure of central tendency by which we may categorize priorities as
being above the center or below the center. If, for a given pairwise comparison matrix, the
AHP priorities are more extreme on average than those of a particular model, the index will
be positive. Conversely, if the priorities of a model are more extreme than those of AHP,
the index will be negative.

Figure 3 contains the values of κ for the two models under the conditions of both 3
and 4 alternatives. The actual values of κ for the 20 judgment matrices appear as short
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Table 2: Regression Coefficients for Discrepancy versus Priority Standard Deviation

Alternatives Intercept Slope Slope/S.E.
Model 1 3 -0.0018 0.0146 1.50

4 -0.0011 0.0204 1.80
Model 2 3 0.0008 0.0327 2.13

4 -0.0012 0.0441 3.69

vertical lines above the x-axis. Above the values of κ is a nonparametric kernel density
estimate of the distribution of κ for that condition. For example, the top left portion of
Figure 3 pertains to κ under Model 1 for the 20 3-alternative judgment matrices. We can
see there is a cluster of values very close to zero where essentially neither set of estimates
is appreciably more extreme than the other. We then see another cluster of values in the
positive portion of the x-axis in the vicinity of 0.005. These values indicate the presence
of a number of judgment matrices for which each AHP priority is on average more extreme
than its Model 1 counterpart by roughly 0.005. The top right portion of the figure displays
a similar pattern of a cluster near zero accompanied by a number of increasingly positive
values of κ. This indicates that the priorities of Model 1 may be as extreme as those of AHP
in some circumstances, but in other circumstances the AHP priorities may be more extreme.
The lower two panels of Figure 3 provide insight as to why Model 2’s priorities were found
to be consistently discrepant from the AHP priorities. We see that the AHP priorities are
consistently more extreme than those of Model 2. Indeed, many of the values of κ are at
0.01 or greater. Such values indicate that in those circumstances the priorities from the
two approaches would not agree even at the second decimal place because on average the
AHP priority would be 0.01 more extreme than Model 2’s priority. Viewed from another
perspective, Model 2 and its assumption of normally distributed errors can be seen to have
a moderating effect of the priorities vis-à-vis AHP.

4 Example

As an example, we consider a decision regarding which of three features to provide as an
option on a luxury automobile. Alternative A is a rear-view wide-angle camera with a dash-
board display, Alternative B is an anti-rollover system, and Alternative C is a drowsy-driver
warning system. Judgments regarding the alternatives were assessed on the AHP scale and
A was very strongly preferred to B, A was moderately preferred to C, and the preference
for C over B was between moderate and equal. In terms of numeric representations, these
judgments corresponded to a 7/1 pairwise comparison for A versus B, a 3/1 pairwise com-
parison for A versus C, and a 1/2 pairwise comparison for B versus C. These judgments
result in AHP priorities of 0.6817, 0.1025, and 0.2158 respectively for A, B and C. The CI
is quite low at 0.003 indicating a high degree of consistency.

The estimation of Models 1 and 2 was conducted using the same conditions as were used
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Figure 3: Kernel Densities of κ
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in the Monte Carlo study in Section 3. Specifically, flat normal priors having mean zero and
variance of 1,000,000 were utilized for all regression coefficients. The initial 1,000 iterations
of the Markov chain were discarded as a burn-in period and inference was conducted using
a subsequent 50,000 iterations. A trace plot of the Markov chain for the priorities, p, of
Model 1 appears in Figure 4. It is evident from Figure 4 that the Markov chains move to
the stationary distributions immediately, well before the 1,000-iteration burn-in period has
elapsed. The point estimates of the priorities under Model 1 are 0.6809, 0.1025, and 0.2166.
The corresponding MAD is 0.0005 which is small. Thus, Model 1 recovers the AHP point
estimates well. We might expect the priorities of Model 2 to be somewhat different from
the AHP priorities, particularly since the dispersion of the priorities is not low (sd = 0.307).
This is confirmed with respective priority estimates of 0.6546, 0.1193 and 0.2260 under Model
2. The MAD here is a somewhat appreciable 0.018.

Inference regarding the priorities can be conducted by constructing the posterior distri-
butions of pA − pB, pA − pC , and pB − pC from the MCMC run. Plots of these distributions
appear in Figure 5. Table 3 contains descriptive statistics for these distributions. We may
conduct inference by looking at the 95% posterior probability intervals for the differences
in the priorities. For example, consider the distributions of pA − pB at the left of Figure
5. We can see that the distributions are essentially positive, with negative values occurring
rarely. Thus, our intuition is that pA > pB since pA−pB > 0. Table 3 permits a more formal
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Figure 4: Traces of p
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inferential treatment of this issue. From Table 3, we see that the 95% interval for pA − pB

under Model 1 is 0.240 – 0.838. Since this interval does not include the value of zero, we
may conclude that pA > pB at the 95% probability level. The same conclusion is reached
under Model 2. Inspection of Table 3 also indicates we may conclude that pA > pC at the
95% probability level under both models. However, we may not conclude that pC > pB at
the 95% probability level under either model since the relevant intervals contain the value
zero.

5 Discussion

In general, Model 1 which utilized the logit link yielded point estimates of stochastic priorities
that were relatively consonant with the priorities of AHP. This finding suggests that of
the two stochastic judgment method approaches described here, Model 1 may be preferred
by decision makers who are seeking to replicate AHP results as closely as possible. One
interpretation of the findings is that AHP produces priorities that are similar to a categorical
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Figure 5: Distributions of Differences in Priority
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Top row is Model 1; bottom row is Model 2.

data model in which logistic errors are assumed. This stands in contrast with many of
the stochastic AHP approaches described previously which are predicated on underlying
normality assumptions. In the models examined here, such normality assumptions lead
to priority estimates which were consistently less toward extreme values than were those
of AHP. Previous research on the multiplicative AHP has shown it to produce priority
estimates that are also more moderate than those of AHP. The results also suggest that the
frequently-invoked assumption of normal errors in other stochastic approaches such as the
multiplicative AHP may not necessarily be the assumption that produces results which best
replicate those of AHP. The effects of alternative assumptions such as assuming a heavy-
tailed distribution for the errors would provide greater insights into the original formulations
of these approaches.

As mentioned in Section 1, there are a number of stochastic multicriteria decision making
methods that are related to AHP. Some require interval judgments and others require mul-
tiple decision makers. Others make assumptions about independence of judgments, and still
others (such as the ones described here) do not require such assumptions. It is not uncom-
mon in this literature for authors to compare the results of a particular method to that of the
original AHP. However, there appears to be a relative dearth of empirical research comparing
the various stochastic multicriteria decision making methods to one another. Thus, many
questions remain unanswered regarding the relationships among these stochastic multicrite-
ria decision making methods. In the current paper, we attempt to outline some similarities
and some contrasts between the models described herein and an alternative approach, the
multiplicative AHP. Future research should attempt to explicitly answer questions about the
circumstances under which certain stochastic methods become preferred over others as such
research will help unify and integrate this growing field of inquiry.

16



Link Function Selection

Table 3: Descriptive Statistics for Posterior Distributions of Differences in Priorities

Standard 2.5% 97.5%
Mean Deviation Quantile Quantile

Model 1
pA − pB 0.578 0.153 0.240 0.838
pA − pC 0.464 0.187 0.067 0.789
pB − pC -0.114 0.126 -0.365 0.132
Model 2
pA − pB 0.535 0.155 0.202 0.801
pA − pC 0.429 0.183 0.042 0.750
pB − pC -0.107 0.127 -0.359 0.144
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