- 2. For each of the following relations indicate for each if it is: a)reflexive; b) symmetric c) antisymmetric d) transitive.

For each property that holds, explain why. For each property that does not hold, give a counter example.			
i) The relation on the set of books in the library defined by Book _a ~Book _b if Book _a and Book _b have titles that begin with the same word.			
a)reflexive; (Just) a book has the same title as itself	b) symmetric Yes) IF Book as tothe beyon W/ the scene word as Book as then Viscoversa	area son war a land	d) transitive (YLS) ANB and BNC Means Hey all start WI the same so ANC
ii) The relation on the set A= {a, b, c} that consists of the following subset of AxA: {(a,a), (c,c)}			
a)reflexive; NO bVb	b) symmetric (Jes) there are no cross rel. So ara & ara ora	c) antisymmetric (yes) The only way try and y x 15 15 x=y=a Or x=y=c	d) transitive. Ges There's no counter example.
iii) The relation on the set of student at SU defined by x~y if x has earned as many credits as y has.			
a)reflexive; Ged Every- on has ces many cullits as themselves	b) symmetric ND IF A has 30 Cr & Bhas 15 ArB but BXA	c) antisymmetric (10) two newstudents would have 0 50 A-B FB-A but A+B	d) transitive. (yes) if A has 7, B and B has 7, C + Len Arc.
iv) The relation on real numbers given by $x \sim y x-y < 1$			
a)reflexive; $ X-X = 0 < 1$	b) symmetric yes 1x-y = 1y = x 1	c) antisymmetric NO 1.22/01 and 1.11/1.2 but 1.2 # 1.1	d) transitive. NO 1~ 1.8 1.8 ~ 2.5 1 × 2.5
v) The relation on the set of natural numbers, N, defined by x~y if x and y are both odd.			
a)reflexive; NO	b) symmetric (yes) if they both an odd that works both ways.	c) antisymmetric NO 3~B, 5~3 3+5	d) transitive. yes if x q y an odd as are y q z then so an x \{\frac{1}{2}.
vi) The relation on $\mathcal{P}(N)$ given by $X \sim Y$ if $X \subseteq Y$.			
a)reflexive; (yes) Cary Set is a subject of itself.	b) symmetric (NO) 213 = 21,23 21,23 \$ 213	c) antisymmetric (yes) this is the definity Sef egerality!	d) transitive. (yes) If ASB&BSC Clearly ASC
vii) The relation on $A = \{1, 2, 3,, 45\}$ defined by x~y if x divides y (that is x y).			
a)reflexive; (yes) everything divides itself	b) symmetric RO Q/G 6/2	c) antisymmetric (yes) if a=nb and b=na a=rta=> N=±1	
		hut there are no	C=nma somo

bute there are no neg #15 m A.

C=nma so acc

3. Let S be the set of students at SU and let C be the set of courses offered at SU. Define a relation between S and C. Student 5 is related to Coorse C if S took C and
earned a grade of A.
4. Is it possible for a relation to be both antisymmetric and symmetric? Explain or give an example.
yes. Any subset of equality is both symmetric and autisymetric since xry > x=y
5. Why is it generally ok to disprove a universally quantified statement by a counterexample but not to prove a statement by example? Because the regation of a universally quantified
statement is existentially qualified so all you need to
shows I a counter example but most general statements
6. Consider the statement: "All primes are odd." are Statements about too many a. What is its negation? there's to exhaustively show it is
There is an even prime possible example.
b. What is it's converse?
all odds are prime
c. What is it's contrapositive?
anything not odd is not prime
Of No even numbers are prime
7. State the axiom of induction. Why must it be an axiom rather than a theorem?
IF S=N 7:
1, 185
2. Whenever KES then K+1ES
then S=N

Complete 8, 9, and 10 on separate paper:

- 8. Prove that if x+y is even and y+z is even then x+z is even.
- 9. Chose two statements to prove by induction (prove the 3nd for Extra Credit):

a.
$$1+2+...+n=n(n+1)/2$$

b. if
$$x \ne 1$$
 then $\frac{x^n - 1}{x - 1} = \{x^{n-1} + x^{n-2} + ... + x + 1\}$

- c. Every natural number can be written as the sum of distinct powers of 2.
- 10. Prove: If A B and B are sets then $A \cap (B \cup C)' = A \cap B' \cap C'$ (use element chasing)