1. Let $A = \{ \heartsuit, \diamondsuit, \diamondsuit, \diamondsuit, \diamondsuit, \diamondsuit, \diamondsuit, \diamondsuit \}$; $B = \{x \in \mathbb{N} | 0 \le x \le 25\}$; $C = \{1, 2, 3, 4, 5\}$ For each of the following, either give an example or state why it is impossible to do so:

c. a function f: A->C which is one to one but not onto.

Not possible 1A1=1C1 50 any 1-1 function is a 1-1 coresp.

5d)

24

d. a function f: A->B which is onto

Not possible 1A121B1

- 2. Give an example of each of the following:
- a. A function $f: N \rightarrow N$ that is neither 1-1 nor onto.

$$\frac{1}{2}$$
 (n) = 3

b. A function f:N -> N that is 1-1 and onto.

c. A function $f: \mathbb{N} \to \mathbb{N}$ that is 1-1 but not onto.

d. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ that is onto but not one to one.

f(n) = |n-3|+1 or $f(n) = \frac{n}{2}$ rounded.

- 3. Let $A = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$; $B = \{x \in \mathbb{N} | -1 \le x \le 25\}$, and f: A > B be defined by $f(x) = x^2 1$.
- a. What is $f^{1}(\{15\})$? $\{-4, 4\}$
- b. What is $f^{i}(\{-1\})$?
- c. What is $f^{1}(\{5\})$? ϕ
- d. What is $f^{-1}(\{0, 1, 2, 3, 4\})$? $\{-2, -1, 1, 2\}$
- e. What is f({-3, -1, 0, 1})?

4. For each of the following relations, is it an equivalence relation, and if so describe the equivalence classes:

a. Given a function f:A -> B, define the relation \sim on A by $x\sim y$ if f(x) = f(y)yes, $\{x\in A \mid f(x)=c\in B\}$ one class for each element in $\{A\}=m(f)\subseteq B$ b. The relation on the set of students at SU defined by $x\sim y$ if x is at least as tall as y.

no, not sym. c. The relation on the set of integers defined by $x\sim y$ if x-y is divisible by 3.

 $T_1 = \{2...-5, -2, 1, 4, 7, ...\}$ $T_2 = \{2-4, -1, 2, 5, 8...\}$ $T_3 = \{2..., 3, 0, 3, 6...\}$

- 5. Let $A = \{1, 2, 3, 4, ..., 60\}$ and consider the relation ~ where x~y if x divides y (that is x|y).
- a. How many different sets are in Ω ~, the collection of subsets associated with ~? List three of them, if T1 = A , T10 = {10, 20, 30, 40, 50, 603, T60 = {60} possible, list three of different sizes. (60. 40
- b. Consider the subsets of A listed in the table below. For each answer the following questions with respect to the ordering ~: (the first set is an example for you)
- i. Does the set have a lower bound? If so, list one.
- ii. Does the set have a greatest lower bound? If so what?
- iii. Does the set have an upper bound? If so, list one.
- iv. Does the set have a least upper bound? If so what?
- v. Does the set have a greatest element? If so what?
- vi. Does the set have a least element? If so what?

20 + 1/2 = 15

Set	i. l.b.	ii. g.l.b.	iii. u.b.	iv. l.u.b.	v. g.e.	vi. l.e.
{20, 30}	Yes, 5	yes, 10	yes, 60	yes, 60	no	no
all of the divisors of 60 (including 1)	Yes, 1	yes, 1	yes,60	yes, 60	yes 60	yes 1
all of the primes in A	yes, I	yes, 1	No	No	No	No
{2, 4, 8, 16}	yes 1	yes 2	yes 32	yes 16	yes 16	yes2
{}	yes, 5	Notjes, 60	· yes 5	yes 1	No.	No
{2, 6, 28}	lus, 1	yes, 2	No	No	No	yes, z

- d. Consider the same ordering (that is $x \sim y$ if x|y) on the set $\{1, 2, 4, 3, 5, 6, 10, 12, 15, 24, 30\}$. On separate paper, draw a lattice diagram for this partially ordered set. See pq 1. 4 pts
- 6. Given the set $A = \{a, b, c, d, e, f, g, h, i, j, k\}$ and the ordering shown in the lattice diagram to the right:
- a. give an example of an unbounded subset of A.
 - £9, 43
- b. give an example of a bounded (both above and below) subset of A.
- c. which elements are maximal?
 - g, h, k, f
- d. Is any element greatest? If so, which?

NO .

- 3072 = 3(900) + 372
 - 900 = 2(372) + 158 372 = 2(156) + 60
 - 156 = 2(60) + 36
 - 36 + 24
- 7. Use the Euclidean Algorithm to find gcd(900, 3072). Show all work on separate paper! 36 = 24 + 12
- 8. List a pair of natural numbers that are not prime but are relatively prime 4,9. List a pair that are neither prime nor relatively prime 25, 15.
- 9. Let A be the set of lower case letters in the standard alphabet and consider the following subsets Ω of $\mathcal{P}(A)$. In each case is $\sim \Omega$ an equivalence relation? Why or why not? If it is not, state a property that fails:
- a. $\{\{a, e, i, o, u\}, \{a, b, c, d, e, f\}, \{g, k, p, q, t, y\}, \{f, h, j, l, r, s, v, w, x, z\}, \{m, n\}\}$
- No, not super transitue bra, are bru b. $\Omega = \{\{a, b, c\}, \{d, e, f\}, \{x, y, z\}\}$
 - No, not reflexive
- 2. $\Omega = \{\{a, e, i, o, u\}, \{b, c, d, g, k, p, q, t, y\}, \{f, h, j, l, r, s, v, w, x, z\}, \{m, n\}\}$