DEVELOPING STUDENTS' CONCEPTUAL UNDERSTANDING OF PLACE VALUE AND DECIMALS

Jill Hitchens and Jessica Williams

Faculty Mentor: Dr. Claudia Burgess

Introduction

Common Misconceptions

- Apply knowledge of whole numbers to decimals. (Durkin & Rittle-Johnson, 2014).
 - Ex. students may believe that 0.45 is greater than
 0.8 because 45 is greater than 8
- Believe if there is a zero at the end of a decimal number, that the value increases (Durkin & Rittle-Johnson, 2014)
 - Ex. students might believe that 0.89 has a lesser value than 0.8900
- Students are often told to "line up the decimal point" (Ashlock, 2010).
 - Ex. believing that 0.7 + 0.7 = 0.14

Purpose

The purpose of this study was to examine students' thinking about whole number place value and the base ten system and how their understandings of these topics influenced their learning of decimals and decimal computations.

Research Question

How can students' proficiency be improved in the areas of whole number place value, decimal place value, and decimal computation?

Theoretical Framework

Five Strands of Mathematical Proficiency

Conceptual Understanding

Comprehension of mathematical concepts, operations, and relations

Procedural Fluency

Skill in carrying out procedures flexibly, accurately, efficiently, and appropriately

Strategic Competence

Ability to formulate, represent, and solve mathematical problems

Adaptive Reasoning

Capacity for logical thought, reflection, explanation, and justification

Productive Disposition

Habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy

Additional Educational Research

- Build upon students' prior knowledge (Carpenter et al., 2015)
- Build upon students' knowledge of place value to develop their understanding of decimals (Ashlock, 2010)
- Use visual models to illustrate the conceptual structure of decimals (National Governors Association & Council of Chief State School Officers, 2010)
- Use inquiry-oriented instruction (Reys et al., 2014).

Methodology: Participants and Procedures Data Gathering and Analysis

Learning Trajectory for Place Value and Decimals

• Recognize a digit in one place represents ten times what it represents in the place to its right

• Read and write decimals to thousandths using expanded notation and place value.

• Compare decimals to thousandths using values of digits

• Recognize a digit in one place represents ten times what it represents in the place to the right and 1/10th of what it represents to the left.

• Add, subtract, multiply, and divide decimals to hundredths and explain.

Participants

- 4 students entering fifth grade in fall 2015
- Pseudonyms:
 - Alex, Bethany, Christina, Daniel
- Participated in:
 - 30-minute initial interview
 - Seven 1-hour tutoring sessions
 - 30-minute post interview
- Participation Rate: 100%

PATHWAYS Cycle of Integrated Teaching and Research

Analyze student assessment data

Gather written and video recorded data from interactions with students

Establish student learning goals

Pose selected tasks to groups of two or four students

Select tasks to move students' thinking forward

Sample Interview Questions

- 1. What would be the value of the next block to the left [of the thousands cube]?
- 2. Add 2.4 + 10.03
- 3. Subtract 12.0 0.145
- 4. Multiply 0.2 x 3

Initial Assessment Results

- Students had a wide range of abilities
- Demonstrated procedural fluency without conceptual understanding

Initial Assessment Results

2,000 1,000,000 100,000 1,000 Daniel

Write 347.392 in expanded form

300.000 + 40.000 + 2.000+.3001.100

Instructional Cluster 1

- Understanding whole number and decimal place value
- Use manipulatives to represent various numbers
- Discover patterns in base ten system

Instructional Cluster 2

Move forward
One Space

Mystery
Card

Subtraction
Card

Roll the
Dice
Gubb
Nour Own
Gubbrach

Roll the
Dice
Gub

Roll the
Dice
Gub

Mystery
Card

Roll the
Dice
Gub

Mystery
Card

Subtraction
Card

Make up
Your Own
Gubbrach

Roll the
Dice
Gub

Mystery
Card

Subtraction
Card

- Used manipulatives
- Adding and subtracting decimals
- Concepts of regrouping
- Differentiated instruction
- Small group work

Instructional Cluster 3

- Multiplication of a whole number by a decimal, ex. 2 x 0.3
- Open-ended word problems
- Represented numbers with drawings
- Explained reasoning

1. Sally bought \(\). \(\) \(\) \(\) ounces of regular potato chips. She also bought \(\) \(\) \(\) \(\) \(\) \(\) \(\) ounces of salt and vinegar chips. How many ounces of chips did she buy?

Estimate what two whole numbers the answer will fall between.

\(\) \(

Post Assessment Results

Initial and Post Interview Results

Results

Alex

Christina and Daniel were able to accurately read the decimals on the post interview.

Bethany

300.000740.000t2.000t.300+.040+.002=

Reflection and Discussion

- An understanding of whole numbers is essential
 - Initial assessment
- Do not move through standards too quickly
 - Multiple experiences with each concept
- Assessment should match instruction method
 - Manipulatives

References

- Asklock, R.B. (2010). Error patterns in computation: Using error patterns to help each student learn (10th ed.). Upper Saddle River, NJ: Pearson.
- © Carpenter, T.P., Fennema, E., Franke, M.L., Levi, L., & Empson, S.B. (2015). Children's mathematics: Cognitively guided instruction (2nd ed.). Portsmouth, NH: Heinemann.
- Confrey, J., Nguyen, K.H., Lee, K., Panorkou, N., Corley, A.K., & Maloney, A.P. (2012). TurnOnCCMath.net: Learning trajectories for the K-8 Common Core Math Standards. Retrieved from https://www.turnonccmath.net
- Durkin, K., & Rittle-Johnson, B. (2014). Diagnosing misconceptions: Revealing changing decimal fraction knowledge. Learning and Instruction, 22(3), 21-29.
- National Research Council. (2001) Adding it Up: Helping Children Learn Mathematics. J. Kilpatrick, J. Swafford, and B. Findell (Eds.). Mathematics Learning Study Committee, Center for Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.
- Reys, R.E., Lindquist, M., Lambdin, D.V., & Smith, N.L. (2014). Helping children learn mathematics (11th ed.). Hoboken, NJ: Wiley.