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Review

 Recursion & Examples

◼ Quick Sort

◼ Sum of Range

◼ The Fibonacci Series

◼ Greatest Common Devisor

◼ Binary Search

 Operator Overloading

◼ As a member function

◼ As a Friend function
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Preview

 Graph

 Tree

◼ Binary Tree

◼ Binary Search Tree

◼ Binary Search Tree Property

◼ Binary Search Tree functions

 In-order walk

 Pre-order walk

 Post-order walk

 Search Tree

 Insert a element to the Tree

 Delete a element form the Tree
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Graph

 Directed graph (or digraph) 

G = (V, E)

V: Set of vertex (node)

E: Set of edges  (ordered vertex pair)

 Undirected graph

G = (V, E)

V: Set of vertex

E: Set of edges (unordered vertex pair)
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Graph
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Digraph G = (V, E)

V = {A, B, C, D, E, F}

E = {(A, B), (C, A),  (B, D), (B, C), (C, D), (D, C), (B, B) (F, E)}

E

F

Graph

COSC220 Computer Science II, Spring 25                      
Dr. Sang-Eon Park

5

A

C

B

D

E

F

Undirected Graph G = (V, E)

V = {A, B, C, D, E, F}

E = {(A, B), (A, C),  (B, D), (B, C), (E, F)}

Tree

 A undirected graph is connected if every 
pair of vertices is connected by a path.

 Free Tree – is a connected acyclic, 
undirected graph.

 Forest – a acyclic but possibly 
disconnected undirected graph

 Rooted tree – a free tree where one of 
the vertices is distinguished  from the 
other.  The distinguished vertex is called 
root.
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Tree
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Free Tree Forest 

Tree
 If the last edge on the path from  

from the root R of a tree T to a 
node is (y ,x) then y is parent of 

x and x is child of y.

 If two nodes have same parent, 
they are siblings

 A node has no children is leaf.

 A non-leaf node is an internal 
node

 The length of the path from the 

root R to a node x is the depth of 
x in the tree.

 The largest depth of any node in 
tree T is the height of tree T.

COSC220 Computer Science II, Spring 25                      
Dr. Sang-Eon Park

8

R

A C DB

G
F

H

E

Binary Tree

 A binary tree is a tree data structure in 
which each node has at most two children. 

 Typically the child nodes are called left
child and right child. 

 Binary trees are commonly used to 
implement binary search trees and 
heaps. 
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Binary Tree
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Balanced Binary 
Tree

Binary Tree
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Unbalanced Binary Tree

Binary Search Tree

 Binary search tree – a binary tree with 

binary-search-tree property.

 Binary-Search-Tree Property

◼ Let x be a node in a binary search tree. 

◼ If y is a node in the left subtree of x then 
key(y)  key(x). 

◼ If y is a node in the right subtree of x, then 
key(x)  key(y).
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Binary Search Tree
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Unbalanced Binary Tree

Operations on Binary Search Tree

 Binary Search Tree Operations

◼ Inorder walk

◼ Preorder walk

◼ Postorder walk

◼ Search Tree

◼ Insert a element to the Tree

◼ Delete a element form the Tree
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Operations on Binary Search Tree
(Inorder, Preorder, Postorder)

 The binary-search-tree property allows us to print 
out all the keys in a binary search tree in sorted 
order by a simple recursive algorithm, called an 
inorder tree walk.

Running Time T(n) = 2T(n/2) + 1 = O(n)
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Inorder_Tree_Walk(x)

{

1 If x  NIL

{

2 Inorder_Tree_Walk(x→leftchild);

3 print x → key

4 Inorder_Tree_Walk(x → rightchild);

}

}

Operations on Binary Search Tree
(Inorder, Preorder, Postorder)
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Preorder_Tree_Walk(x)

{

1 If x  NIL

{

2 Print x → key;

3 preorder_Tree_Walk(x→leftchild);

4 preorder_Tree_Walk(x → rightchild);

}

}

Postorder_Tree_Walk(x)

{

1 If x  NIL

{

2 postorder_Tree_Walk(x→leftchild);

3 postorder_Tree_Walk(x → rightchild);

4 Print x → key;

}

}

Operations on Binary Search Tree
(Inorder, Preorder, Postorder)
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Inorder_Tree_Walk(x)

{

1 If x  NIL

{

2 Inorder_Tree_Walk(x→leftchild);

3 print x → key

4 Inorder_Tree_Walk(x → rightchild);

}

}
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Operations on Binary Search Tree
(Inorder, Preorder, Postorder)
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Preorder_Tree_Walk(x)

{

1 If x  NIL

{

2 print x → key;

3 prenorder_Tree_Walk(x→leftchild);

4 preorder_Tree_Walk(x → rightchild);

}

}

Operations on Binary Search Tree
(Inorder, Preorder, Postorder)
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Postorder_Tree_Walk(x)

{

1 If x  NIL

{

2 Postorder_Tree_Walk(x→leftchild);

3 Postorder_Tree_Walk(x → rightchild);

4 Print x → key;

}

}

Operations on Binary Search Tree
(Search an Element)

 Searching a binary search tree for a specific value can be a 

recursive or iterative process. 

 We begin by examining the root node. If the tree is null, 
the value we are searching for does not exist in the tree. 

Otherwise, if the value equals the root, the search is 

successful. If the value is less than the root, search the left 
sub-tree. 

 If it is greater than the root, search the right subtree. This 

process is repeated until the value is found or the indicated 

sub-tree is null. If the searched value is not found before a 
null sub-tree is reached, then the item must not be present 

in the tree.
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Operations on Binary Search Tree
(Search an Element)

Searching
Input:  pointer to the root of the tree and a key k, 

Output: returns a pointer to a node with key k if one exists; 
otherwise return NIL.

T(n) = T(n/2) + 1 = O(log n) if  a binary tree is balanced 

T(n)= T(n-1) + 1 = O(n) if a binary tree is not balanced
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Tree_Search (x, k)

{

1 if x == NIL or k == x → key

return x;

2 if k < x → key

3 return Tree_Search (x → leftchild, k);

4 else

5 return Tree_Search(x → rightchild, k);

}

Operations on Binary Search Tree
(Search an Element)
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Search (x, 14)
x 14 = 5 or 14> 5 or 14 < 5 ?

Operations on Binary Search Tree
(Search an Element)
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Operations on Binary Search Tree
(Search an Element)

 Searching a binary search tree for a specific value 
can be a recursive or iterative process. Following 
shows the iterative version of tree search
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Tree_Search_II(x, k)

{

1 y = x; //better not modify pointer x

2 while y  NIL and k  y → key

{

3 if k < y → key

4 y = y → leftchild;

5 else

6 y = y → rightchild;

}

7 return y; 

}

Operations on Binary Search Tree
(Search an Element)
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x

14 = 5 or 14> 5 or 14 < 5 ?

Operations on Binary Search Tree
(Search an Element)
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Operations on Binary Search Tree
(Minimum Element)

Minimum

 An element in a binary search tree whose key is a 
minimum can always be found by leftmost child.

T(n) = O(log2 n) or possible worst case O(n)
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Tree_Minimum(x)

{

0 y = x;

1 while y → leftchild  NIL

2 y = y → leftchild;

3 return y;

}

Operations on Binary Search Tree
(Maximum Element)

Maximum

 An element in a binary search tree whose key is a 
maximum can always be founded by rightmost 
child.

T(n) = O( log2 n)
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Tree_Maximum(x)

{

0 y = x;

1 while y → rightchild  NIL

2 y = y → rightchild;

3 return y;

}

Operations on Binary Search Tree
(Successor of a Node)

 The successor of a node x is the node with 
the smallest key greater than x->key

 We need to concern two cases
1. If the right subtree of x is not empty, then 

the successor of x is the minimum of right 
subtree. 

2. If the right subtree of x is empty and x has a 
successor y, then y is the lowest ancestor 
of x whose left child is also an ancestor of x. 
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Operations on Binary Search Tree
(Successor of a Node)
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Ex) successor of node 15 is 17 (min of right subtree)
Ex) successor of node 13 is 15.

Operations on Binary Search Tree
(Successor of a Node)
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Tree_Successor (x)

{

1 if x → rightchild  NIL

return Tree_Minimum(x → rightchild);

2 else

{

3 y = x → parent; 

// if x is y’s leftchild then y is successor of x

4 while y  NIL and x ==y → rightchild

{

5 x = y;

6 y = y → parent;

}

7 return y;

}

}

Operations on Binary Search Tree
(Predecessor of a Node)

 The predecessor of a node x is the node 
with the largest key smaller than key(x)

 We need to concern two cases
1. If the left subtree of x is not empty, then the 

predecessor of x is the maximum of right 
subtree. 

2. If the left subtree of x is empty and x has a 
predecessor y, then y is the lowest ancestor 
of x whose right child is also an ancestor of x. 
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Operations on Binary Search Tree
(Predecessor of a Node)
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Ex) Predecessor of node 15 is 13 (Maximum of left subtree)
Ex) Predecessor of node 9 is 7.

Operations on Binary Search Tree
(Predecessor of a Node)
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Tree_Predecessor (x)

{

1 if x → leftchild  NIL

return Tree_Maximum(x → leftchild)

2 else

{

3 y = x → parent 

// if x is y’s rightchild then y is predecessor of x

4 while y  NIL and x ==y → leftchild

{

5 x = y

6 y = y → parent

}

7 return y

}

}

Operations on Binary Search Tree
(Insert a New Node)

 Insertion begins as a search would begin; 
if the root is not NIL, we search the left or 
right sub-trees as before. 

 Eventually, we will reach an external node 
and add the value as its right or left child, 
depending on the node's value.
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Operations on Binary Search Tree
(Insert a New Node)
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// T is point to root of binary tree z is point to new node 

Tree_Insert (T, z)

{

1 y = NIL;

2 x = T; 

//while loop find out the location for new node

3 while x  NIL 

{

4 y = x;

5 if z → key < x → key

6 x = x → leftchild;

7 else

8 x = x → rightchild;

}

9 z → parent = y;

10 if y = NIL; // means there is any node in the BST

11 T = z; //new node become root

12 else if z → key < y → key

13 y → leftchild = z; // insert new node as a left child o y

14 else

15 y → rightchild = z; //insert new node as a right child of y

}

Operations on Binary Search Tree
(Insert a New Node)
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Operations on Binary Search Tree
(Insert a New Node)
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Operations on Binary Search Tree
(Insert a New Node)
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Operations on Binary Search Tree
(Insert a New Node)
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Operations on Binary Search Tree
(Insert a New Node)
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Operations on Binary Search Tree
(Insert a New Node)
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Operations on Binary Search Tree
(Insert a New Node)
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Operations on Binary Search Tree
(Insert a New Node)
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Operations on Binary Search Tree
(Insert a New Node)
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Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25                      
Dr. Sang-Eon Park

47

5

7

2 8

14

9

41

163

Operations on Binary Search Tree
(Insert a New Node)
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Operations on Binary Search Tree
(Delete a Node)

 There are three cases needed to be 
concern in binary tree deletion.

1. A deleting node has no children 
( deleting node is a leaf)

2. A deleting node has one children.

3. A deleting node has two children.

a) If successor of deleting node is a leaf

b) If successor of deleting node is not a leaf
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Operations on Binary Search Tree
(Delete a Node)
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Delete Leaf Node

Operations on Binary Search Tree
(Delete a Node)
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Delete a Node with 
one child

Operations on Binary Search Tree
(Delete a Node)
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Operations on Binary Search Tree
(Delete a Node)
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Operations on Binary Search Tree
(Delete a Node)
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Binary Search Tree
(Delete a node)

Tree_Delete (T, z)

{

if z →leftchild == NIL or z  → rightchild == NIL

y = z

else

y = Tree_Successor(z)

if y  → leftchild  NIL

x = y  → leftchild

else

x = y  → rightchild

if x  NIL

x  → parent = y  → parent

if y  → parent ==NIL

T → root = x

else if y == y  → parent → left

y  → parent → leftchild = x

else

y  → parent → rightchild = x

if y  z

z  → key =y  → key

delete y

}
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