
3/18/2025

1

Review

 Recursion & Examples

◼ Quick Sort

◼ Sum of Range

◼ The Fibonacci Series

◼ Greatest Common Devisor

◼ Binary Search

 Operator Overloading

◼ As a member function

◼ As a Friend function

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

1

Preview

 Graph

 Tree

◼ Binary Tree

◼ Binary Search Tree

◼ Binary Search Tree Property

◼ Binary Search Tree functions

 In-order walk

 Pre-order walk

 Post-order walk

 Search Tree

 Insert a element to the Tree

 Delete a element form the Tree

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

2

Graph

 Directed graph (or digraph)

G = (V, E)

V: Set of vertex (node)

E: Set of edges (ordered vertex pair)

 Undirected graph

G = (V, E)

V: Set of vertex

E: Set of edges (unordered vertex pair)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

3

Graph

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

4

A

C

B

D

Digraph G = (V, E)

V = {A, B, C, D, E, F}

E = {(A, B), (C, A), (B, D), (B, C), (C, D), (D, C), (B, B) (F, E)}

E

F

Graph

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

5

A

C

B

D

E

F

Undirected Graph G = (V, E)

V = {A, B, C, D, E, F}

E = {(A, B), (A, C), (B, D), (B, C), (E, F)}

Tree

 A undirected graph is connected if every
pair of vertices is connected by a path.

 Free Tree – is a connected acyclic,
undirected graph.

 Forest – a acyclic but possibly
disconnected undirected graph

 Rooted tree – a free tree where one of
the vertices is distinguished from the
other. The distinguished vertex is called
root.

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

6

3/18/2025

2

Tree

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

7

Free Tree Forest

Tree
 If the last edge on the path from

from the root R of a tree T to a
node is (y ,x) then y is parent of

x and x is child of y.

 If two nodes have same parent,
they are siblings

 A node has no children is leaf.

 A non-leaf node is an internal
node

 The length of the path from the

root R to a node x is the depth of
x in the tree.

 The largest depth of any node in
tree T is the height of tree T.

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

8

R

A C DB

G
F

H

E

Binary Tree

 A binary tree is a tree data structure in
which each node has at most two children.

 Typically the child nodes are called left
child and right child.

 Binary trees are commonly used to
implement binary search trees and
heaps.

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

9

Binary Tree

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

10

Balanced Binary
Tree

Binary Tree

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

11

Unbalanced Binary Tree

Binary Search Tree

 Binary search tree – a binary tree with

binary-search-tree property.

 Binary-Search-Tree Property

◼ Let x be a node in a binary search tree.

◼ If y is a node in the left subtree of x then
key(y)  key(x).

◼ If y is a node in the right subtree of x, then
key(x)  key(y).

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

12

3/18/2025

3

Binary Search Tree

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

13

5

7

2 8

14

9

41

163

Binary Search Tree

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

14

2

1 3

7

9

8

Unbalanced Binary Tree

Operations on Binary Search Tree

 Binary Search Tree Operations

◼ Inorder walk

◼ Preorder walk

◼ Postorder walk

◼ Search Tree

◼ Insert a element to the Tree

◼ Delete a element form the Tree

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

15

Operations on Binary Search Tree
(Inorder, Preorder, Postorder)

 The binary-search-tree property allows us to print
out all the keys in a binary search tree in sorted
order by a simple recursive algorithm, called an
inorder tree walk.

Running Time T(n) = 2T(n/2) + 1 = O(n)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

16

Inorder_Tree_Walk(x)

{

1 If x  NIL

{

2 Inorder_Tree_Walk(x→leftchild);

3 print x → key

4 Inorder_Tree_Walk(x → rightchild);

}

}

Operations on Binary Search Tree
(Inorder, Preorder, Postorder)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

17

Preorder_Tree_Walk(x)

{

1 If x  NIL

{

2 Print x → key;

3 preorder_Tree_Walk(x→leftchild);

4 preorder_Tree_Walk(x → rightchild);

}

}

Postorder_Tree_Walk(x)

{

1 If x  NIL

{

2 postorder_Tree_Walk(x→leftchild);

3 postorder_Tree_Walk(x → rightchild);

4 Print x → key;

}

}

Operations on Binary Search Tree
(Inorder, Preorder, Postorder)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

18

5

7

2 8

14

9

41

163

1 2 3 4 5 7 8 9 14 16

Inorder_Tree_Walk(x)

{

1 If x  NIL

{

2 Inorder_Tree_Walk(x→leftchild);

3 print x → key

4 Inorder_Tree_Walk(x → rightchild);

}

}

3/18/2025

4

Operations on Binary Search Tree
(Inorder, Preorder, Postorder)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

19

5

7

2 8

14

9

41

163

7 2 1 4 3 5 8 14 9 16

Preorder_Tree_Walk(x)

{

1 If x  NIL

{

2 print x → key;

3 prenorder_Tree_Walk(x→leftchild);

4 preorder_Tree_Walk(x → rightchild);

}

}

Operations on Binary Search Tree
(Inorder, Preorder, Postorder)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

20

5

7

2 8

14

9

41

163

721 43 5 8149 16

Postorder_Tree_Walk(x)

{

1 If x  NIL

{

2 Postorder_Tree_Walk(x→leftchild);

3 Postorder_Tree_Walk(x → rightchild);

4 Print x → key;

}

}

Operations on Binary Search Tree
(Search an Element)

 Searching a binary search tree for a specific value can be a

recursive or iterative process.

 We begin by examining the root node. If the tree is null,
the value we are searching for does not exist in the tree.

Otherwise, if the value equals the root, the search is

successful. If the value is less than the root, search the left
sub-tree.

 If it is greater than the root, search the right subtree. This

process is repeated until the value is found or the indicated

sub-tree is null. If the searched value is not found before a
null sub-tree is reached, then the item must not be present

in the tree.

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

21

Operations on Binary Search Tree
(Search an Element)

Searching
Input: pointer to the root of the tree and a key k,

Output: returns a pointer to a node with key k if one exists;
otherwise return NIL.

T(n) = T(n/2) + 1 = O(log n) if a binary tree is balanced

T(n)= T(n-1) + 1 = O(n) if a binary tree is not balanced

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

22

Tree_Search (x, k)

{

1 if x == NIL or k == x → key

return x;

2 if k < x → key

3 return Tree_Search (x → leftchild, k);

4 else

5 return Tree_Search(x → rightchild, k);

}

Operations on Binary Search Tree
(Search an Element)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

23

5

13

10 14

11

12

3

Search (x, 14)
x 14 = 5 or 14> 5 or 14 < 5 ?

Operations on Binary Search Tree
(Search an Element)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

24

13

10 14

11

12

Search (x, 14)

x 14= 13 or 14> 13 or 14 < 13 ?

14= 14 or 14> 14 or 14 < 14 ?

3/18/2025

5

Operations on Binary Search Tree
(Search an Element)

 Searching a binary search tree for a specific value
can be a recursive or iterative process. Following
shows the iterative version of tree search

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

25

Tree_Search_II(x, k)

{

1 y = x; //better not modify pointer x

2 while y  NIL and k  y → key

{

3 if k < y → key

4 y = y → leftchild;

5 else

6 y = y → rightchild;

}

7 return y;

}

Operations on Binary Search Tree
(Search an Element)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

26

15

5 16

13

10 14

20

18 23

11

12

3

Search (x, 14)

x

14 = 5 or 14> 5 or 14 < 5 ?

Operations on Binary Search Tree
(Search an Element)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

27

15

5 16

13

10 14

20

18 23

11

12

3

Search (x, 14)

x

14 = 12 or 14> 12 or 14 < 12 ?

14 = 13 or 14> 13 or 14 < 13 ?

Operations on Binary Search Tree
(Minimum Element)

Minimum

 An element in a binary search tree whose key is a
minimum can always be found by leftmost child.

T(n) = O(log2 n) or possible worst case O(n)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

28

Tree_Minimum(x)

{

0 y = x;

1 while y → leftchild  NIL

2 y = y → leftchild;

3 return y;

}

Operations on Binary Search Tree
(Maximum Element)

Maximum

 An element in a binary search tree whose key is a
maximum can always be founded by rightmost
child.

T(n) = O(log2 n)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

29

Tree_Maximum(x)

{

0 y = x;

1 while y → rightchild  NIL

2 y = y → rightchild;

3 return y;

}

Operations on Binary Search Tree
(Successor of a Node)

 The successor of a node x is the node with
the smallest key greater than x->key

 We need to concern two cases
1. If the right subtree of x is not empty, then

the successor of x is the minimum of right
subtree.

2. If the right subtree of x is empty and x has a
successor y, then y is the lowest ancestor
of x whose left child is also an ancestor of x.

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

30

3/18/2025

6

Operations on Binary Search Tree
(Successor of a Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

31

15

6

7

18

20173

42 13

9

Ex) successor of node 15 is 17 (min of right subtree)
Ex) successor of node 13 is 15.

Operations on Binary Search Tree
(Successor of a Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

32

Tree_Successor (x)

{

1 if x → rightchild  NIL

return Tree_Minimum(x → rightchild);

2 else

{

3 y = x → parent;

// if x is y’s leftchild then y is successor of x

4 while y  NIL and x ==y → rightchild

{

5 x = y;

6 y = y → parent;

}

7 return y;

}

}

Operations on Binary Search Tree
(Predecessor of a Node)

 The predecessor of a node x is the node
with the largest key smaller than key(x)

 We need to concern two cases
1. If the left subtree of x is not empty, then the

predecessor of x is the maximum of right
subtree.

2. If the left subtree of x is empty and x has a
predecessor y, then y is the lowest ancestor
of x whose right child is also an ancestor of x.

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

33

Operations on Binary Search Tree
(Predecessor of a Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

34

15

6

7

18

20173

42 13

9

Ex) Predecessor of node 15 is 13 (Maximum of left subtree)
Ex) Predecessor of node 9 is 7.

Operations on Binary Search Tree
(Predecessor of a Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

35

Tree_Predecessor (x)

{

1 if x → leftchild  NIL

return Tree_Maximum(x → leftchild)

2 else

{

3 y = x → parent

// if x is y’s rightchild then y is predecessor of x

4 while y  NIL and x ==y → leftchild

{

5 x = y

6 y = y → parent

}

7 return y

}

}

Operations on Binary Search Tree
(Insert a New Node)

 Insertion begins as a search would begin;
if the root is not NIL, we search the left or
right sub-trees as before.

 Eventually, we will reach an external node
and add the value as its right or left child,
depending on the node's value.

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

36

3/18/2025

7

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

37

// T is point to root of binary tree z is point to new node

Tree_Insert (T, z)

{

1 y = NIL;

2 x = T;

//while loop find out the location for new node

3 while x  NIL

{

4 y = x;

5 if z → key < x → key

6 x = x → leftchild;

7 else

8 x = x → rightchild;

}

9 z → parent = y;

10 if y = NIL; // means there is any node in the BST

11 T = z; //new node become root

12 else if z → key < y → key

13 y → leftchild = z; // insert new node as a left child o y

14 else

15 y → rightchild = z; //insert new node as a right child of y

}

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

38

1614 587 9 32 4 1

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

39

1614 58 9 32 4 1

7

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

40

1614 58 9 34 1

7

2

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

41

1614 59 34 1

7

2 8

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

42

16 59 34 1

7

2 8

14

3/18/2025

8

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

43

16 534 1

7

2 8

14

9

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

44

16 531

7

2 8

14

9

4

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

45

16 53

7

2 8

14

9

41

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

46

53

7

2 8

14

9

41

16

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

47

5

7

2 8

14

9

41

163

Operations on Binary Search Tree
(Insert a New Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

48

5

7

2 8

14

9

41

163

3/18/2025

9

Operations on Binary Search Tree
(Delete a Node)

 There are three cases needed to be
concern in binary tree deletion.

1. A deleting node has no children
(deleting node is a leaf)

2. A deleting node has one children.

3. A deleting node has two children.

a) If successor of deleting node is a leaf

b) If successor of deleting node is not a leaf

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

49

Operations on Binary Search Tree
(Delete a Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

50

Delete Leaf Node

Operations on Binary Search Tree
(Delete a Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

51

Delete a Node with
one child

Operations on Binary Search Tree
(Delete a Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

52

Operations on Binary Search Tree
(Delete a Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

53

Operations on Binary Search Tree
(Delete a Node)

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

54

3/18/2025

10

Binary Search Tree
(Delete a node)

Tree_Delete (T, z)

{

if z →leftchild == NIL or z → rightchild == NIL

y = z

else

y = Tree_Successor(z)

if y → leftchild  NIL

x = y → leftchild

else

x = y → rightchild

if x  NIL

x → parent = y → parent

if y → parent ==NIL

T → root = x

else if y == y → parent → left

y → parent → leftchild = x

else

y → parent → rightchild = x

if y  z

z → key =y → key

delete y

}

COSC220 Computer Science II, Spring 25
Dr. Sang-Eon Park

55

