
3/24/2025

1

Review

 Binary Search Tree

◼ Binary Search Tree Property

◼ Binary Search Tree Operations

 Inorder walk

 Preorder walk

 Postorder walk

 Search Tree

 Insert a element to the Tree

 Delete a element form the Tree

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

1

Preview

 Inheritance

◼ Type of Inheritance

◼ Syntax for Derived Class

◼ Overriding Member Function in the Base Class

◼ Using Member Functions

◼ Casting Base-Class Pointers to Derived-class
pointer

◼ Using constructor and destructors in derived
classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

2

Inheritance

 When creating a new class, instead of
writing completely new data and function
members, the programmer can designate
that the new class is to inherit data
member and/or member function from the
previously created class –reusability !

 The new class created is called a Derived
class and the old class used as a base is
called a Base class in C++ inheritance
terminology.

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

3

Inheritance

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

4

Card Class

Black JackPoker

• 52 card deck

• Shuffle

• Display n cards

• …

• Black Jack game rules

• Wining price

• …

• Poker game rules

• Wining price

• …

Inheritance

 The derived class will inherit all the features of
the base class in C++ inheritance.

 But, not all of them will be accessible by the
member functions of the derived class.

 Only protected and public member can be directly
accessible by the members of the derived class

 The derived class can also add its own features,
data etc.,

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

5

Inheritance

Some of the exceptions to be noted in C++
inheritance are as follows.

 The constructor and destructor of a
base class are not inherited

 The assignment operator is not
inherited

 the friend functions and friend classes
of the base class are also not inherited

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

6

3/24/2025

2

Types of Inheritances

C++ offers three kinds of inheritance

 Public inheritance – public member and
protected member of the base class are inherited
as a public member and protected member of the
derived class. The private members of base class
cannot be accessed by derived class members.

 Private inheritance – public and protected
member of the base class become private
member of the derived class.

 Protected inheritance – public and protected
member of the base class become protected
member of the derived class.

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

7

Syntax of Inherited Class
class <derived class name> : <type of inheritance> <Base class name>
{

};

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

8

// inher.cpp

#include <iostream>

using namespace std;

// Base class

class SomeBase {

private:

int x;

public:

void SetX(int i) {x = i;}

SomeBase() { x =0;}

void Hello() {cout <<"Hello" <<endl;}

int GetX() {return x;}

};

//Derived class from class SomeBase

class SomeDerived : public SomeBase {

private:

int x;

public:

void SetX(int i){x = i;} //overrided function

SomeDerived() {x =0;}

int GetX(){return x;} // overrided function

};

Override Base-class Members in a Derived Class

 A derived class can override a base-class
member function by supplying a new
version that function with same name with
same parameter list.

 If a function name is same but different
parameter, it called overloading.

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

9

Using Member Functions

 If there is no overridden function in the
derived class, inherited functions can be
accessed same way as its own member
functions.

 If there is overridden functions in the
derived class, need provide more
information to access base class
overridden functions

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

10

// inher2.cpp

#include <iostream>

using namespace std;

// Base class

class SomeBase {

private:

int x;

public:

void SetX(int i) {x = i;}

SomeBase() { x =0;}

void Hello() {cout <<"Hello" <<endl;}

int GetX() {return x;}

};

//Derived class from class SomeBase

class SomeDerived : public SomeBase {

private:

int x;

public:

void SetX(int i){x = i;} //overrided function

SomeDerived() {x =0;}

int GetX(){return x;} // overrided function

};

void main()

{

SomeDerived a;

a.SetX(5);

a.SomeBase::SetX(6);

cout << a.GetX()<<endl;

cout << a.SomeBase::GetX()<<endl;

a.Hello(); // can be used like its own function

}
COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

11

Using Member Functions

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

12

SomeDerived a

a SomeDerived SomeBase

3/24/2025

3

Casting Base-Class Pointers to Derived-

Class Pointers

 When a derived object is created, its base
class object is also created.

 By using pointer to a derived class object,
base class public function can be used.

 But not from the pointer to base class
object to a derived class object.

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

13

// inher3.cpp casting base-class pointers to derived-class pointers

#include <iostream>

using namespace std;

class SomeBase {

int x;

public:

int GetX() {return x;}

void SetX(int a) {x =a;}

SomeBase() {x=0; cout<<"Base object is created"<<endl;}

~SomeBase() { cout << "Base object is destroyed"<<endl;}

};

class SomeDerived : public SomeBase {

int x;

public:

int GetX() {return x;}

void SetX(int a) {x = a;}

SomeDerived() {cout<<"Derived object is created"<<endl;}

~SomeDerived() {cout <<"Derived object is destroyed"<<endl;}

};

void main()

{

SomeDerived *dptr;

SomeDerived w;

w.SetX(3);

dptr = &w;

cout <<dptr->SomeBase::GetX()<<endl;

cout<<dptr->GetX()<<endl;

cout <<w.GetX() <<endl;

}

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

14

Casting Base-Class Pointers to Derived-

Class Pointers

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

15

SomeDerived a

a SomeDerived SomeBase

SomeDerived *dptr;

dptr = &a;

dptr

Indirect Base Class

 It might be possible to create a derived
class from other derived class.

 More than two object space need to be
created in this case since a base class for
a derived class is derived from other class.

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

16

Indirect Base Class

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

17

// inher4.cpp casting base-class pointers to derived-class

// pointers and to derived-derived class

#include <iostream>

using namespace std;

class B {

int x;

public:

int f() {return x;}

void j(int a) {x =a;}

B() {x=0; cout<<"Base object is created"<<endl;}

~B() { cout <<" Base object is deallocated"<<endl;}

};

class D : public B {

int x;

public:

D() {x=1; cout<<"Derived object is created"<<endl;}

~D() {cout<<"Derived object is deallocated"<<endl;}

int f() {return x;}

void j(int a) {x = a;}

};

Indirect Base Class

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

18

class DD : public D {

int x;

public:

DD() {cout<<"Derived-and-derived object is created"<<endl;}

~DD() {cout<<"Derived-and-derived object is deallocated"<<endl;}

int f() {return x;}

void j(int a) {x = a;}

};

void main()

{

DD *dptr;

DD w;

w.j(2);

dptr = &w;

cout <<dptr->B::f()<<endl; // function from base class B

cout <<dptr->D::f()<<endl; // function from derived class D

cout<<dptr->f()<<endl; // function from derived class DD

cout <<w.f() <<endl; // function from derived class DD

}

3/24/2025

4

Indirect Base Class

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

19

w

Instance of class BInstance of class DInstance of class DD

1
x

0
xx

DD *dptr;

dptr

DD w;

dptr = &w;

f j f j f j

Using constructors and destructors in

derived classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

20

// inher5.cpp using destructor and constructor in derived class

#include <iostream>

using namespace std;

class B {

int x;

public:

int f() {return x;}

void j(int a) {x =a;}

B(int a) {x=a; cout<<"Base object is created"<<endl;}

~B() { cout <<"Base object is destroyed now "<<endl;}

};

class D : public B {

int x;

public:

int f() {return x;}

void j(int a) {x = a;}

// derived constructor pass a parameter to the base class constructor

D(int a, int b):B(b) {x = a; cout<<"Derived object is created"<<endl;;}

~D(){cout <<"Derived class is destroyed now."<<endl;}

};

void main()

{

D *dptr;

D w (1,0);

dptr = &w;

cout <<dptr->B::f()<<endl;

cout<<dptr->f()<<endl;

}

Using constructors and destructors

in derived classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

21

// inher6.cpp using destructor and constructor in derived class

#include <iostream>

using namespace std;

class B {

int x;

public:

int f() {return x;}

void j(int a) {x =a;}

B(int a) {x=a; cout<<"Base object is created"<<endl;}

~B() { cout <<"Base object is destroyed now "<<endl;}

};

class D : public B {

int x;

public:

int f() {return x;}

void j(int a) {x = a;}

// derived constructor pass a parameter to the constructor class B

D(int a, int b):B(b) {x = a; cout<<"Derived object is created"<<endl;;}

~D(){cout <<"Derived object is destroyed now."<<endl;}

};

Using constructors and destructors

in derived classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

22

class DD : public D {

int x;

public:

int f() {return x;}

void j(int a) {x = a;}

// DD class construcor pass two parameter to the

// construtor class D

DD(int a, int b, int c):D(b, c)

{x = a; cout<<"Derived-derived object is created"<<endl;;}

~DD()

{cout <<"Derived-derived object is destroyed now."<<endl;}

};

void main()

{

DD *dptr;

DD w (2,1,0);

dptr = &w;

cout <<dptr->B::f()<<endl;

cout <<dptr->D::f()<<endl;

cout<<dptr->f()<<endl;

}

Using constructors and destructors in

derived classes

How can you create an derived object
independent from base-class parameters?

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

23

Using constructors and destructors in

derived classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

24

// inher7.cpp: using default constructor for create derived object without

// concerning the parameter of base-class destructor and

// constructor

#include <iostream>

using namespace std;

class B {

int x;

public:

int f() {return x;}

void j(int a) {x =a;}

B(int = 0);

~B() { cout <<"Base object is destroyed now "<<endl;}

};

B::B(int a)

{

x=a;

cout<<"Base object is created"<<endl;

}

class D : public B {

int x;

public:

int f() {return x;}

void j(int a) {x = a;}

D(int =1);

~D(){cout <<"Derived object is destroyed now."<<endl;}

};

D::D(int a)

{

x = a;

cout<<"Derived object is created"<<endl;

}

3/24/2025

5

Using constructors and destructors in

derived classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

25

class DD : public D {

int x;

public:

int f() {return x;}

void j(int a) {x = a;}

DD(int a) {x = a; cout<<"Derived-derived object is created"<<endl;;}

~DD(){cout <<"Derived-derived object is destroyed now."<<endl;}

};

void main()

{

DD *dptr;

DD w (2);

dptr = &w;

cout <<dptr->B::f()<<endl;

cout <<dptr->D::f()<<endl;

cout<<dptr->f()<<endl;

}

