
3/24/2025

1

Review

 Binary Search Tree

◼ Binary Search Tree Property

◼ Binary Search Tree Operations

 Inorder walk

 Preorder walk

 Postorder walk

 Search Tree

 Insert a element to the Tree

 Delete a element form the Tree

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

1

Preview

 Inheritance

◼ Type of Inheritance

◼ Syntax for Derived Class

◼ Overriding Member Function in the Base Class

◼ Using Member Functions

◼ Casting Base-Class Pointers to Derived-class
pointer

◼ Using constructor and destructors in derived
classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

2

Inheritance

 When creating a new class, instead of
writing completely new data and function
members, the programmer can designate
that the new class is to inherit data
member and/or member function from the
previously created class –reusability !

 The new class created is called a Derived
class and the old class used as a base is
called a Base class in C++ inheritance
terminology.

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

3

Inheritance

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

4

Card Class

Black JackPoker

• 52 card deck

• Shuffle

• Display n cards

• …

• Black Jack game rules

• Wining price

• …

• Poker game rules

• Wining price

• …

Inheritance

 The derived class will inherit all the features of
the base class in C++ inheritance.

 But, not all of them will be accessible by the
member functions of the derived class.

 Only protected and public member can be directly
accessible by the members of the derived class

 The derived class can also add its own features,
data etc.,

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

5

Inheritance

Some of the exceptions to be noted in C++
inheritance are as follows.

 The constructor and destructor of a
base class are not inherited

 The assignment operator is not
inherited

 the friend functions and friend classes
of the base class are also not inherited

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

6

3/24/2025

2

Types of Inheritances

C++ offers three kinds of inheritance

 Public inheritance – public member and
protected member of the base class are inherited
as a public member and protected member of the
derived class. The private members of base class
cannot be accessed by derived class members.

 Private inheritance – public and protected
member of the base class become private
member of the derived class.

 Protected inheritance – public and protected
member of the base class become protected
member of the derived class.

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

7

Syntax of Inherited Class
class <derived class name> : <type of inheritance> <Base class name>
{

};

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

8

// inher.cpp

#include <iostream>

using namespace std;

// Base class

class SomeBase {

private:

int x;

public:

void SetX(int i) {x = i;}

SomeBase() { x =0;}

void Hello() {cout <<"Hello" <<endl;}

int GetX() {return x;}

};

//Derived class from class SomeBase

class SomeDerived : public SomeBase {

private:

int x;

public:

void SetX(int i){x = i;} //overrided function

SomeDerived() {x =0;}

int GetX(){return x;} // overrided function

};

Override Base-class Members in a Derived Class

 A derived class can override a base-class
member function by supplying a new
version that function with same name with
same parameter list.

 If a function name is same but different
parameter, it called overloading.

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

9

Using Member Functions

 If there is no overridden function in the
derived class, inherited functions can be
accessed same way as its own member
functions.

 If there is overridden functions in the
derived class, need provide more
information to access base class
overridden functions

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

10

// inher2.cpp

#include <iostream>

using namespace std;

// Base class

class SomeBase {

private:

int x;

public:

void SetX(int i) {x = i;}

SomeBase() { x =0;}

void Hello() {cout <<"Hello" <<endl;}

int GetX() {return x;}

};

//Derived class from class SomeBase

class SomeDerived : public SomeBase {

private:

int x;

public:

void SetX(int i){x = i;} //overrided function

SomeDerived() {x =0;}

int GetX(){return x;} // overrided function

};

void main()

{

SomeDerived a;

a.SetX(5);

a.SomeBase::SetX(6);

cout << a.GetX()<<endl;

cout << a.SomeBase::GetX()<<endl;

a.Hello(); // can be used like its own function

}
COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

11

Using Member Functions

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

12

SomeDerived a

a SomeDerived SomeBase

3/24/2025

3

Casting Base-Class Pointers to Derived-

Class Pointers

 When a derived object is created, its base
class object is also created.

 By using pointer to a derived class object,
base class public function can be used.

 But not from the pointer to base class
object to a derived class object.

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

13

// inher3.cpp casting base-class pointers to derived-class pointers

#include <iostream>

using namespace std;

class SomeBase {

int x;

public:

int GetX() {return x;}

void SetX(int a) {x =a;}

SomeBase() {x=0; cout<<"Base object is created"<<endl;}

~SomeBase() { cout << "Base object is destroyed"<<endl;}

};

class SomeDerived : public SomeBase {

int x;

public:

int GetX() {return x;}

void SetX(int a) {x = a;}

SomeDerived() {cout<<"Derived object is created"<<endl;}

~SomeDerived() {cout <<"Derived object is destroyed"<<endl;}

};

void main()

{

SomeDerived *dptr;

SomeDerived w;

w.SetX(3);

dptr = &w;

cout <<dptr->SomeBase::GetX()<<endl;

cout<<dptr->GetX()<<endl;

cout <<w.GetX() <<endl;

}

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

14

Casting Base-Class Pointers to Derived-

Class Pointers

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

15

SomeDerived a

a SomeDerived SomeBase

SomeDerived *dptr;

dptr = &a;

dptr

Indirect Base Class

 It might be possible to create a derived
class from other derived class.

 More than two object space need to be
created in this case since a base class for
a derived class is derived from other class.

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

16

Indirect Base Class

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

17

// inher4.cpp casting base-class pointers to derived-class

// pointers and to derived-derived class

#include <iostream>

using namespace std;

class B {

int x;

public:

int f() {return x;}

void j(int a) {x =a;}

B() {x=0; cout<<"Base object is created"<<endl;}

~B() { cout <<" Base object is deallocated"<<endl;}

};

class D : public B {

int x;

public:

D() {x=1; cout<<"Derived object is created"<<endl;}

~D() {cout<<"Derived object is deallocated"<<endl;}

int f() {return x;}

void j(int a) {x = a;}

};

Indirect Base Class

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

18

class DD : public D {

int x;

public:

DD() {cout<<"Derived-and-derived object is created"<<endl;}

~DD() {cout<<"Derived-and-derived object is deallocated"<<endl;}

int f() {return x;}

void j(int a) {x = a;}

};

void main()

{

DD *dptr;

DD w;

w.j(2);

dptr = &w;

cout <<dptr->B::f()<<endl; // function from base class B

cout <<dptr->D::f()<<endl; // function from derived class D

cout<<dptr->f()<<endl; // function from derived class DD

cout <<w.f() <<endl; // function from derived class DD

}

3/24/2025

4

Indirect Base Class

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

19

w

Instance of class BInstance of class DInstance of class DD

1
x

0
xx

DD *dptr;

dptr

DD w;

dptr = &w;

f j f j f j

Using constructors and destructors in

derived classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

20

// inher5.cpp using destructor and constructor in derived class

#include <iostream>

using namespace std;

class B {

int x;

public:

int f() {return x;}

void j(int a) {x =a;}

B(int a) {x=a; cout<<"Base object is created"<<endl;}

~B() { cout <<"Base object is destroyed now "<<endl;}

};

class D : public B {

int x;

public:

int f() {return x;}

void j(int a) {x = a;}

// derived constructor pass a parameter to the base class constructor

D(int a, int b):B(b) {x = a; cout<<"Derived object is created"<<endl;;}

~D(){cout <<"Derived class is destroyed now."<<endl;}

};

void main()

{

D *dptr;

D w (1,0);

dptr = &w;

cout <<dptr->B::f()<<endl;

cout<<dptr->f()<<endl;

}

Using constructors and destructors

in derived classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

21

// inher6.cpp using destructor and constructor in derived class

#include <iostream>

using namespace std;

class B {

int x;

public:

int f() {return x;}

void j(int a) {x =a;}

B(int a) {x=a; cout<<"Base object is created"<<endl;}

~B() { cout <<"Base object is destroyed now "<<endl;}

};

class D : public B {

int x;

public:

int f() {return x;}

void j(int a) {x = a;}

// derived constructor pass a parameter to the constructor class B

D(int a, int b):B(b) {x = a; cout<<"Derived object is created"<<endl;;}

~D(){cout <<"Derived object is destroyed now."<<endl;}

};

Using constructors and destructors

in derived classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

22

class DD : public D {

int x;

public:

int f() {return x;}

void j(int a) {x = a;}

// DD class construcor pass two parameter to the

// construtor class D

DD(int a, int b, int c):D(b, c)

{x = a; cout<<"Derived-derived object is created"<<endl;;}

~DD()

{cout <<"Derived-derived object is destroyed now."<<endl;}

};

void main()

{

DD *dptr;

DD w (2,1,0);

dptr = &w;

cout <<dptr->B::f()<<endl;

cout <<dptr->D::f()<<endl;

cout<<dptr->f()<<endl;

}

Using constructors and destructors in

derived classes

How can you create an derived object
independent from base-class parameters?

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

23

Using constructors and destructors in

derived classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

24

// inher7.cpp: using default constructor for create derived object without

// concerning the parameter of base-class destructor and

// constructor

#include <iostream>

using namespace std;

class B {

int x;

public:

int f() {return x;}

void j(int a) {x =a;}

B(int = 0);

~B() { cout <<"Base object is destroyed now "<<endl;}

};

B::B(int a)

{

x=a;

cout<<"Base object is created"<<endl;

}

class D : public B {

int x;

public:

int f() {return x;}

void j(int a) {x = a;}

D(int =1);

~D(){cout <<"Derived object is destroyed now."<<endl;}

};

D::D(int a)

{

x = a;

cout<<"Derived object is created"<<endl;

}

3/24/2025

5

Using constructors and destructors in

derived classes

COSC 220 Computer Science II, Spring 2025

Dr. Sang-Eon Park

25

class DD : public D {

int x;

public:

int f() {return x;}

void j(int a) {x = a;}

DD(int a) {x = a; cout<<"Derived-derived object is created"<<endl;;}

~DD(){cout <<"Derived-derived object is destroyed now."<<endl;}

};

void main()

{

DD *dptr;

DD w (2);

dptr = &w;

cout <<dptr->B::f()<<endl;

cout <<dptr->D::f()<<endl;

cout<<dptr->f()<<endl;

}

