Preview

4/11/2025

o What is STL?

o Iterator and Containers

o Vector Container

o Vector Container Members

COSC220 Computer Science Il, Spring 2025
k

What is the Standard Template Library

o The Standard Template Library (STL) was
developed by Alexander Stepanov and
Meng Lee (1995) at HP.

o The STL is a fundamental part of the C++
which is defined as standard in the 1997.

o The STL is a collection C++ libraries that
allow you to use several well known kinds
of data structures (Stack, Queue, Linked
List, Vector,...)without having to program
them.

COSC220 Computer Science Il, Spring 2025
‘Sang-Eon Park

What is the Standard Template Library

Library Description

<vector> |A dynamic array

<list> |A randomly changing sequence of items

<stack> |A sequence of items with pop and push at one end only
<queue> |A Sequence of items with pep and push at opposite ends
<deque> |Double Ended Queue with pop and push at both ends
<bitset> |A subset of a fixed and small set of items

<set> An unordered collection of items

<map> |An collection of pairs of items indexed by the first one

COSC220 Computer Science Il, Spring 2025
Dr. Sang-Eon Park

What is the Standard Template Library

o The STL has been adopted as a standard by the
ISO/IEC and ANSI.

o However current implementation of the STL are
not totally potable.

o The concept of STL come from reusability

o Using STL, can save time and effort to develop a
software.

o There are components of STL:
= Containers
m [terators

COSC220 Computer Science Il, Spring 2025
1. Sang-Eon Park

Iterators and Containers

Containers

o A Container is a data structure that holds
a number of object of the same type or
class.

o Ex) Lists, Vectors, Stacks, Queues, etc
are all Containers

o STL has been carefully designed so that
each containers provides space for data

€OSC220 Computer Science Il, Spring 2025
Dr. Sang-Eon Park

Iterators and Containers

Iterators

o Items in Containers are referred to be
special objects called: iterators.

o iterators are generalization of pointers.

COSC220 Computer Science I, Spring 2025 6

Dr. Sang-Eon Park

Vector Container

4/11/2025

o Vectors are a kind of sequence
containers - like regular array, their
elements stored in contiguous storage
locations (that means elements can be
accessed not only using iterators but also
using offsets on reqular pointers

o Vector containers are implemented as
dynamic arrays - unlike regular array,
size of vector automatically being
expanded and contracted

COSC220 Computer Science Il, Spring 2025

Vector Container

o Vector provide almost the same
performance as array plus have ability to
easily resized.

o Vector usually consume more memory
than arrays in order to accommodate for
extra storage space for future growth

COSC220 Computer Science Il, Spring 2025 8
‘Sang-Eon Park

Vector Container Member Function

(constructor) Construct vector (pu

(destructor) Vector destructor (p.

operator= Copy vector content (ou

Iterators:

begin Retum iterator to beginning (o

end Retun iterator to end (publ 0
rbegin Retum reverse iterator to re beginning {put
rend Retum reverse iterator to reverse end
Capacity:

size Returm size (pubic membe

max_size Retum maximum size (p

resize Change size (pubic member f

capacity Retum size of allocated storage capacity (s
empty Test whether vectar is empty (publs

reserve Request a change in capacity (ubl

COSC220 Computer Science Il, Spring 2025
Dr. Sang-Eon Park

Vector Container Member Function

Element access:

operator[] Access element (public merm!
at Access element (o

front Access first element
back Access last element (pub
Modifiers

assign Assign vector content (pu
push_back Add element at the end
pop_back Delete last element
insert Insert elements (p

erase Erase elements (g

swap Swap content

clear Clear content (pu [P
Allocator:

get_allocator Get allocator (f

COSC220 Computer Science Il, Spring 2025 10
1. Sang-Eon Park

Dr. Sang-Eon Park

COSC220 Computer Science I, Spring 2025 12
Dr. Sang-Eon Park

4/11/2025

Vector Container Member Function

Vector Container Member Function

template < class T >
void printVec(vector< T > &vec)

{
vector <int>::iterator p;
for (p = vec.begin(); p vec.end(); p++)
cout << *p << ' 5
cout <<endl;
}

template < class T >
void printVecRev (vector< T > &v)
{

vector< T >::reverse_iterator p2;

for (p2 = v.rbegin(); p2 != v.rend(); ++p2)
cout << *p2 << ' !
cout << endl;

// vector2.cpp comparing size, capacity and max_size
#include <iostream>

#include <vector>

using namespace std;

int main ()
{

vector<int> myvector;

// set some con t in the vector:
for (int i=0; i<100; i++) myvector.push back(i);

cout << "size: " << (int) myvector.size() << endl;
cout << "capacity: " << (int) myvector.capacity() << endl;
cout << "max_size: " << (int) myvector.max_size() << endl;
return 0;

COSC220 Computer Science Il, Spring 2025 13
. Sang-Eon Park

COSC220 Computer Science Il, Spring 2025 14
1. Sang-Eon Park

ectors r back (
#include <i

#include <

using namespace std;

templ 1
void printvec(vector <T> &);

int main ()
vector<int> myvector;
me initial cont

for (int i=1;i<10;i++)
myve

r.push_back(i); // 1, 2, 3, 4, 5, 6, 7,

printvec (myvector) ;
myvector.resize(5); // 1, 2, 3, 4,
printvec (nyvector) ;

myvector.resize(8,100); // 1, 2, 3, 4, 5,
printvec (myvector) ;

myvector.resize(12); // 1, 2, 3, 4, 5, 1
printvec (myvector) ;

return 0;

lass T>

Vec (vector <T> &v)

Vector Container Member Function

// vectord.cpp front(): access front
/7 back () : access back
#include < ream>

#include <vector>

using namespace std;

int main ()
{

vector<int> myvector;

myvector.push_back(77); //
myvector.push_back(16); // 77, 16

myvector.front() -= myvector.back(); // 61, 16

cout << "myvector.front() is no

" << myvector.front() << endl;

return 0;

COSC220 Computer Science Il, Spring 2025 16
1. Sang-Eon Park

i dcv.size(); i+4)
<<vlil;
)
L I Tence Il, Spring 2025 15
Dr. Sang-Eon Park
/ vectorS.cpp insert() inserting into

ostream>

or (3,100); //

iterator it

it = myvector.insert (it , 200);

myvector.insert (it,2,300); // now ve

/ "it" no longer valid, get a new one

it = myvector.begin();

vector<int> anothervector (2,400); // new vecor with 400 400
myvector.insert (it+2,anothervector.begin(),anothervector.end());
// now myvector is 300 300 400 400 200 100 100 100

int myarray [] = { 501,502,503 };

myvector.in

rt (myvector.begin() ray+3) ;

100 1

now myvector is 501 502 503 3
cout << "myvector contains:";
for (it=myvector.begin(); it<myvector.end(); it++)
cout << " M << ity

cout << endl;

eturn 0;

Vector for Structured Data Type

or container member functions with

uctured data type

using
struct Student {
r LastName[20];
ar FirstName[20]; / First
t IDNumber; // Student ID
Student () ; / Constructor
bool operator const Student);
bool operator > (const Student);
bool operator < (const Student);
iend ostreams operator << (ostream &stream,

name

st Student &student);

Sang-Eon Park

COSC220 Computer Science ll, Spring 2025 Y
or

cout << "What is the student's Las "
adent’'s "
tudent's ID#: ";
>> IDNumber;
)
COSC220 Computer Science I, Spring 2025 1
Or. Sang-Eon Park

(Student x)

oper:
return (x.IDNumber == IDNumber);

dent. x)

oper
return (IDNumber > x.IDNumber) ;

dent. x)

oper

return (IDNumber < x.IDNumber) ;

Student &student)

student.LastName << ", " <

student. IDNumber <<" -

ptr = new Student;
Vec.push_back (*ptr) ;

vecli-11;

cout << 5t

COSC220 Computer Science Il, Spring 2025
. n Park

4/11/2025

