
MATH 202 Exam II (6.1 - 7.3) Review

1. Know how to determine the area between curves.

2. Know how to find the volume of a solid using the Disk method and Shell Method.

3. Know how to determine the average value of a function.

4. Know how to determine work done.

5. Know how to use integration by parts.

6. Know how to use trigonometric substitution.

Example exercises: Quiz & Homework questions; Ch.6 Review, #7 - 16, 23, 25, 27, 28,
30; Ch.7 Review, #1 - 9, 11 - 20, 23, 24, 26 - 30;

A Few Worked Examples

1. Find the area of the region between the curves f(x) = x2+2x+1, and g(x) = 2x+5.

First, we must find where f(x) and g(x) intersect. f(x) = g(x)⇒ x2+2x+1 = 2x+5
⇒ x2 − 4 = 0 ⇒ x = ±2. Now, g(x) ≥ f(x) on this interval so the area between the
two curves is
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2. Find the volume of the solid obtained by rotating the region bounded by y =√
25− x2, y = 0, x = 2, x = 4 about the x-axis.

The area of a cross section of the volume is A(x) = π(
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25− x2)2.
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3. Find the volume generated by rotating the region bounded by y = x2, y = 2 − x2,
about x = 1.

The distance from the center of the rectangle to the axis of revolution is p(x) = 1−x,
and the height of the rectangle is (2− x2)− x2 = 2− 2x2
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4. Evaluate the following integral,

∫
z

10z
dz.

Let’s try u = z and dv =
1
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dz = 10−z dz, this means du = dz
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