MATH 306 Exam I (1.1 - 1.7) Review

1. Know the definition of a linear system, solution to a linear system and how to solve a linear system

2. Know how to determine if a solution is exists and if a solution is unique.

3. Know how to recognize echelon forms, vector & matrix equations.

4. Know how to describe the solution sets of homogeneous and nonhomogeneous linear systems.

5. Know how to determine linear independence/dependence of a set.

Example exercises: Quiz & Homework questions; Ch.1 Supplementary Exercises, #1 - 19

A Few Worked Examples:

1. If $b \neq 0$, can the solution set of Ax = b be a plane through the origin? Explain.

No. If the solution set of $A\mathbf{x} = \mathbf{b}$ contained the origin, then **0** would satisfy $A\mathbf{0} = \mathbf{b}$, which is not possible since $\mathbf{b} \neq \mathbf{0}$.

2. Under what conditions on b_1 and b_2 (if any) does $A\mathbf{x} = \mathbf{b}$ have a solution?

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 0 & 7 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Find two vectors which satisfy $A\mathbf{x} = \mathbf{0}$, and general solution to $A\mathbf{x} = \mathbf{b}$.

$$\begin{bmatrix} 1 & 2 & 0 & 3 & 0 \\ 2 & 4 & 0 & 7 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 0 & 3 & b_1 \\ 2 & 4 & 0 & 7 & b_2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 3 & b_1 \\ 0 & 0 & 0 & 1 & b_2 - 2b_1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 0 & 7b_1 - 3b_2 \\ 0 & 0 & 0 & 1 & b_2 - 2b_1 \end{bmatrix}$$
No condition, there is a solution for any choice of b_1 and b_2 ;
$$\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

both satisfy
$$A\boldsymbol{x} = \boldsymbol{0}$$
. The general solution is $\boldsymbol{x} = \begin{bmatrix} 7b_1 - 3b_2 \\ 0 \\ 0 \\ b_2 - 2b_1 \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$.

- 3. Suppose v_1, v_2, v_3, v_4 are vectors in \mathbb{R}^3
 - a) These four vectors are dependent because _____.
 - b) The two vectors v_1 and v_2 will be dependent if _____.
 - c) The vectors v_1 and 0 are dependent because _____.

Solution:

- a) The four vectors are columns of a 3 by 4 matrix with at least one free variable so Ax = 0 has a nontrivial solution.
- b) The two vectors v_1 and v_2 will be dependent if one is a multiple of the other.
- c) The vectors v_1 and 0 are dependent because $c_1v_1 + c_20 = 0$ has a nontrivial solution (take any $c_2 \neq 0$).