1. Determine if the following vectors are linearly dependent or independent.

$$\left\{ \begin{array}{c} 1\\1\\3\\1 \end{array} \right\} \begin{array}{c} 1\\3\\1 \end{array} \left[\begin{array}{c} 1\\3\\1\\3 \end{array} \right] \begin{array}{c} 0\\1\\-1\\1 \end{array} \right] \right\}$$

[10 points]

2. Find the general solution of the homogeneous system below. Give your answer as a vector.

1

[10 points]

3. Find the general solution to the following linear system:

Write solution in parametric vector form.

[10 points]

4. Constuct a 2×3 matrix A, not in echelon form, such that the solution of $A\mathbf{x} = \mathbf{0}$ is a plane in \mathbb{R}^3 .

[5 points]

5. Compute the product or state that it is undefined.

a)
$$\begin{bmatrix} -2 & -2 & 6 \\ 5 & 8 & -5 \end{bmatrix} \begin{bmatrix} 8 \\ -3 \\ 3 \end{bmatrix}$$
 [4 points]

b)
$$\begin{bmatrix} 5 & -3 \\ -3 & 4 \\ -3 & 8 \end{bmatrix} \begin{bmatrix} 2 \\ -4 \\ 8 \end{bmatrix}$$

[4 points]

6. Let
$$A = \begin{bmatrix} 1 & -3 & 2 \\ -2 & 5 & -1 \\ 3 & -4 & 5 \end{bmatrix}$$
 and $\boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

Determine if the equation $A\boldsymbol{x} = \boldsymbol{b}$ is consistent for all possible b_1, b_2, b_3 . If the equation is not consistent for all possible b_1, b_2, b_3 , give a description of the set of all \boldsymbol{b} for which the equation is consistent (i.e., a condition which must be satisfied by b_1, b_2, b_3).

[10 points]

7. Given
$$\boldsymbol{u} = \begin{bmatrix} -9\\7 \end{bmatrix}$$
, $\boldsymbol{v} = \begin{bmatrix} -3\\4 \end{bmatrix}$. Find the indicated vectors:
a) $\boldsymbol{u} + \boldsymbol{v}$ [3 points]
b) $\boldsymbol{v} - \boldsymbol{u}$ [3 points]
c) $5\boldsymbol{v}$ [3 points]

d)
$$-2\boldsymbol{u} + 5\boldsymbol{v}$$
 [3 points]

8. Let
$$\boldsymbol{a_1} = \begin{bmatrix} 3\\4\\-4 \end{bmatrix}$$
, $\boldsymbol{a_2} = \begin{bmatrix} -4\\1\\1 \end{bmatrix}$ and $\boldsymbol{b} = \begin{bmatrix} 2\\-10\\6 \end{bmatrix}$

Determine whether **b** can be written as a linear combination of a_1 and a_2 . In other words, determine whether weights x_1 and x_2 exist, such that $x_1a_1 + x_2a_2 = b$. If so, determine weights x_1 and x_2 .

[10 points]