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1 Expressions, Variables and Built-in Functions

Mathematica is an expression evaluator. You input an expression and Mathematica outputs
its evaluation. This Chapter addresses the basics of how you form expressions to communi-
cate with Mathematica.

1.1 Expressions

As we begin, we assume you’ve been able to successfully start up Mathematica and that
a new window has been opened on your computer screen. You’re now ready to start typing.

1.1.1 Simple Expressions

You can enter numerical expressions quite easily into Mathematica and it will respond
(you type the first line and either press the Enter key on the numeric keypad, or Shift-
Return on the keyboard, to make Mathematica respond with what you see on the second
line):

(3+4)(4-8)

−28

Addition and subtraction are written in the obvious way. Parentheses are used for group-
ing. Multiplication of terms is denoted by writing the terms or factors next to each other,
as above. However, we may often prefer to use the explicit multiplication operator, the
asterisk (*), when writing an expression such as the previous one:

(3+4)*(4-8)

−28

Division is indicated by using the slash (/) character, so that the previous expression
divided by 5 would be written as:

(3+4)*(4-8)/5

−28

5

Notice that Mathematica prints the answer as a simple fraction (in reduced terms), the
same way that you might write it on an algebra test. In general, Mathematica always
represents its evaluations as exactly as it can, unlike the way in which most calculators
would.

Mathematica knows the meaning of parentheses ( and ) in evaluating expressions, just
as they’ve been used algebraically for years. On the other hand, you may have also used
other grouping symbols such as curly braces { and } or square brackets [ and ]. But in
Mathematica, curly braces and square brackets have an entirely different meaning than
parentheses and cannot be used to group expressions.

Exponentiation is a common operation for numbers and expressions, and Mathematica
uses the caret symbol (“ˆ”) to represent it. For example, to compute 42 raised to the twenty
seventh power, 4227, you write:

42^27

67255970008406099921710928456387385568002048

You now already see that Mathematica can easily handle very large numbers, something
that handheld graphing calculators cannot do.

A final computation involves factorials. Recall that if n is a positive integer, the symbol
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n! represents the product of all positive integers less than or equal to n. In other words,
we usually write n! = n(n− 1)(n− 2) . . . (3)(2)(1). Mathematica knows factorial notation,
and is even able to compute very large values, such as:

32!

10333147966386144929666651337523200000000

1.1.2 In and Out Labeling

Mathematica numbers every input it receives and every output it produces starting with
1, from the beginning of a session. What you will see “on-screen” for some of the previous
inputs and outputs will usually appear in a form such as that shown below. (The In[ ] and
Out[ ] labels are supplied automatically by Mathematica; you do not enter them yourself.)

In[1] := (3+4)*(4-8)

Out[1] := −28

In[2] := (3+4)*(4-8)/5

Out[2] := −28

5

In[3] := 42^27

Out[3] := 67255970008406099921710928456387385568002048

In[4] := 32!

Out[4] := 10333147966386144929666651337523200000000

From this point on in the text, we’ll avoid the In- and Out-notation. We’ll emphasize the
start of an input with a leading filled triangle (“I”) and the start of an output (that is not
otherwise a graphic) with a non-filled triangle (“B”). Examples:

I (3+4)*(4-8)

B −28

I (3+4)*(4-8)/5

B −28

5

1.1.3 Notebooks and Cells

The open window in which you have been working interactively is called a notebook,
reminiscent of the way in which many students have done mathematics work over the years.
Notebooks are the computer documents that you’ll eventually print and/or save on your
computer system. Notebooks can later be retrieved and edited, just as word processing or
spreadsheet documents are managed on a computer.

What you saw on-screen for the first input you entered and the first output you received
should have looked something like the following.
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You’ll notice brackets appearing at the right edge of the window. These delineate note-
book cells, areas of the window which hold certain types of information. The (3+4)(4-8)
that you typed was collected into an input cell by Mathematica and bracketed; the output
−28 was collected and placed into an output cell and bracketed; and both cells were then
bracketed together to indicate their in and out pairing.

As you start to work with Mathematica, you’ll only be typing or editing in input cells,
and you’ll almost never alter the contents of an output cell.

You’ll also see a horizontal, flashing cursor on a line across the window, which indicates
that Mathematica awaits insertion of a new cell following the output cell. Typing anything
will, by default, create a new input cell in which your typing will appear.

This organization of a notebook as a collection of cells is extremely useful in creating
structured documents that, as you will see, eventually contain chapter and section headings,
paragraphs that mix text, graphics, and mathematics, and Mathematica input and output.
You’ll learn more about this in later work.

1.1.4 Mathematica Watches Your Input

Have you noticed, yet? As you entered expressions into Mathematica, you’ll see characters
colored differently. Not only will the coloring change as you type, but you’ll also see some
flashing going on. So what’s happening?

It’s simple. Mathematica gives you clues as you type as to whether what you’ve got so
far makes any sense, even before you try to evaluate it.

For example, in entering the expression (3+4)(4-8), you’ll see the following sequence:

• Type “(”. Mathematica color-codes the left parenthesis in red. This indicates that
Mathematica is now waiting for a matching right parenthesis.
• Type “3”. By itself, the 3 looks OK and it appears in black.
• Type “+”. The plus sign is suspicious if left alone and so is also colored red. Shouldn’t

something else follow?
• Type “4”. Better! The 3 + 4 now makes sense, although we’re still waiting on that left

parenthesis, aren’t we?
• Type “)”. Mathematica flashes back on the left parenthesis to show you what matched

the right parenthesis. All is good now; everything’s set in black.
• Type “(”. Mathematica color-codes the left parenthesis in red and we’re now waiting

once again for a matching right parenthesis.
• And so it continues . . . until you’ve completed the expression, at which time all will be

colored black.

All in all, this is a good thing. When an expression appears completely in black, at least it
seems to make sense. When characters appear in red, something’s amiss. (You’ll see other
colors come and go in the future as well.) Always watch the coloring!

You’ll also see Mathematica take some proactive measures as you type. For example, if
you type the characters “2” and “3” with a space between (2 – space – 3), Mathematica will
reformat your input in-place when you type the 3 as

I 2 × 3

This happens because spaces in Mathematica implicitly mean multiplication. Here, Math-
ematica is assisting you so that you know what you’ve entered is not the number 23, but
rather the product of 2 and 3.

It’s possible to control Mathematica’s color coding and oversight rules more precisely, but
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the default behavior should be quite acceptable for our purposes.

1.1.5 Operator Precedence and Parentheses

Mathematica regards some operators as having more importance than others in evaluating
expressions. For example, the following expression produces what may be a non-intended
result:

I 3+4*5

B 23

Indeed, the multiplication of 4 with 5 is performed before the addition with 3, yielding
an expression that is not the same as:

I (3+4)*5

B 35

This should be expected, because mathematicians have been writing expressions such
as sin(3 + 2x) and 1 + x2 for years, without confusing them to be sin(5x) and (1 + x)2,
respectively. It will be important to use parentheses in writing expressions for Mathematica
for clarity.

The evaluation of 3+4*5 as 3+(4*5) reflects the notion that multiplication has a higher
priority or precedence than addition during evaluation. Similar rules of precedence must be
established for expressions which may contain various mixtures of additions, subtractions,
multiplications, divisions and exponentiations. Among the operators mentioned so far,

• the exponentiation operator has the highest precedence, or importance – for example,
1 + x2 is not (1 + x)2;
• multiplication and division have lower precedence than exponentiation, neither has

precedence over the other, but both have precedence over addition and subtraction –
for example, sin(3 + 2x) is not sin(5x);
• addition and subtraction have the lowest precedence, but neither has precedence over

the other; and
• operators of equal precedence are generally evaluated left-to-right, except for multiple

exponentiation operators, which are evaluated right-to-left.

However, the most important idea to remember involving the precedence of operators
is that the explicit use of parentheses always overrides any implicit priority or precedence
of evaluation. We strongly recommend that you use parentheses in forming expressions to
avoid any possible confusion, rather than to rely on built-in rules of operator precedence.

1.1.6 Calculator-Style Values

As seen above, Mathematica always produces an exact (symbolic) result for expressions
whenever it can, rather than a numerical value as would be given by an electronic calculator.
To convert an exact, symbolic expression into an approximate numerical value, the operator
N is used:

I N[(3+4)*(4-8)/5]

B −5.6

The Mathematica operator N (the capital letter is significant) gives the numerical value
of an exact expression. The square brackets are the notation for “applying” the operator N
to the expression inside the square brackets.

The numerical value of any expression must be understood to be only an approximate
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value, useful to some number of decimal places or significant digits. For example, if you
enter a simple fraction such as 109

98 , you get an exact result:

I 109/98

B
109

98

Evaluating N for this fraction produces a result whose (display) precision is given to 6
significant digits (this is not the same as requiring that the result be correct to 6 decimal
places after the decimal point):

I N[109/98]

B 1.11224

You can specify that more decimal digits be shown as an approximation for an exact value
– say 40 – by supplying a second argument for N (a comma separates the arguments):

I N[109/98,40]

B 1.112244897959183673469387755102040816327

When approximate numerical values must be written using “many” digit positions to
either the right or left of the decimal point, Mathematica will begin to use standard, scientific
notation to display approximate results, such as with the following value:

I N[1234567890]

B 1.23457× 109

Approximate numerical values will be used for any expression that involves either the re-
sult of N, or any numbers explicitly written with a decimal point. For example, the fraction
above is treated differently and automatically converted to an approximate numerical value
if it is written with terms involving decimal points:

I 109.0/98.0

B 1.11224

Similarly, if the following value is entered directly using a decimal point, it is considered
to be an approximate, numerical value and is reported using scientific notation:

I 0.000003492836

B 3.49284× 10−6

1.2 Formulas using Variables, Expressions, and Assignments

We start this section with a simple geometry formula.

Given a triangle with sides of lengths a, b, and c, Heron’s formula gives the area
of the triangle by the formula

A =
√
s(s− a)(s− b)(s− c),

where s is the semi-perimeter s of the triangle, or one-half the perimeter of the
triangle, i.e., s = (a+ b+ c)/2.

We will use variables that closely match the formula to show how to compute the area of
a triangles whose sides have lengths 3, 4 and 6 as follows. Indeed, following the formula
closely, we see that the variables a, b, and c in the formula should take on the values of 3,
4, and 6, respectively. In Mathematica we say to do exactly this:
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I a = 3

B 3

I b = 4

B 4

I c = 6

B 6

Each of the three input cells above introduce a name into Mathematica’s vocabulary, and
each name is being assigned a value. Each of the inputs is called an assignment statement.
It has an equal sign (“=”) in the middle as part of the syntax

a name of our choosing = an expression

Mathematica figures out the value of what’s on the right side of the equal sign and then
gives the result the name that appears on the left side of the equal sign. It also reports the
value computed.

Essentially, we could paraphrase the sequence above by saying:

• “Let a be a name for the value 3” – and Mathematica reported “OK, the value is 3”
• “Let b be a name for the value 4” – and Mathematica reported “OK, the value is 4”
• “Let c be a name for the value 6” – and Mathematica reported “OK, the value is 6”

Mathematica will now remember these values whenever you use one of the names a, b, or
c in an expression. For example, if you forget what a represents, you can ask for its value
with

I a

B 3

Or if you wanted to know what the perimeter of the triangle was, you could evaluate

I a+b+c

B 13

For the area computation, we must next find the semi perimeter. We not only compute
this with an expression, but we use an assignment statement to give the result a name so
Mathematica can use it later.

I s = (a+b+c)/2

B
13

2

Once again, we could paraphrase the assignment statement above by saying: “Let s be a
name for the value of the expression (a+b+c)/2,” and because each of a, b, and c has a
value, this expression is really just (3 + 4 + 6)/2, which simplifies as 13/2.

Finally, it’s time to get the area
√
s(s− a)(s− b)(s− c) and we do this just by forming

this expression in an input cell and evaluating it. (Note: The expression uses Mathematica’s
square root function, named Sqrt. The argument of the function must appear within square
brackets [ and ].)

I Sqrt[s(s-a)(s-b)(s-c)]

B

√
455

4
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This final input could be phrased as “What is the value of the expression Sqrt[s(s-a)(s-

b)(s-c)],” which Mathematica works backwards to be
√

13
2 ( 13

2 − 3)( 13
2 − 4)( 13

2 − 6), then it

does the arithmetic and simplifies the result.

Question: Suppose we wanted to use the value
√

455
4 later. How could we ask Mathematica

to remember it? The answer is simple: give the result a name.

But what name would you use? If you use a as a name for the value of the area, then
Mathematica will forget about a originally representing a side length of 3 (a name in Math-
ematica can only have one value!).

Remember that the mathematical formula was written as A =
√
s(s− a)(s− b)(s− c)

and, in mathematics, we know that A and a mean different things. The same is true in
Mathematica: the names a and A mean different things (names are said to be case-sensitive
in Mathematica). We can use the name A for the value of the area.

One possibility then – which as we’ll advise below is definitely not quite the right thing
to do – would be to input the following (perhaps with a copy-and-paste of the expression
from the last output cell so it will look nicer on screen):

I A = Sqrt[455]/4

Now Mathematica would know that whenever you used the name A in an expression, its

value would be
√

455
4 . However, you should never do anything like this, because as a general

principle:

Never take an output and reenter it in a new input cell. Whenever you compute
something and you expect to use the result of the computation again, give a name
to the result with an assignment statement when you do the computation.

What we should have done was not simply compute the area above and observe the result,
but we should have used an assignment statement to give the result of the computation a
name when we computed it. We should now go back, edit, and re-evaluate the input cell
with the area computation:

I A = Sqrt[s(s-a)(s-b)(s-c)]

B

√
455

4

1.2.1 Variable Naming Rules

Can there be variable names in Mathematica other than single letters that are either
lowercase or uppercase? Yes – otherwise, the range of variable names would be very limited.
Variable names can be longer than one character and the characters are not restricted to
being only letters. The rules are that variable names must:

• start with a letter, and
• can only be made up of letters and digits and a handful of other, special characters

(which we will not show here).

Examples of variable names we could have used in the area computation above include: area,
side1, side2, side3 and semiPerimeter. And, as we mentioned above, all names are case
sensitive. Thus a and A mean different things, as do semiPerimeter and semiperimeter.
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1.2.2 Variable Naming Convention

One observation here is that there are literally thousands of names that Mathematica
knows already, such as Sqrt, the name of the square root function. As a result, you’d
probably not want to use a variable name yourself called Sqrt, because it would conflict
with what Mathematica expects it to mean. And how would you know if you accidentally
defined something Mathematica already knows about?

To solve this problem of your own variable names possibly getting mixed up with Mathe-
matica names, the designers of Mathematica made sure that every name that Mathematica
already knows begins with a capital letter. As a result, we strongly recommend that you use
the following convention (as we throughout this text) when you choose variable names, to
ensure that the names you define will not conflict with Mathematica’s pre-defined names

Every variable name you define should start with a lowercase letter.

Thus, in Heron’s Formula, we would never use A for the area on our own; we’d prefer to
use, say, the name area. It just turns out that Mathematica does not use the name A itself,
so we were lucky. (We could have made it to B, in fact, with no trouble, but Mathematica
already has its own C, D, and E, and you already know about N.)

1.2.3 Review of the Area Computation

To summarize, here’s the sequence of statements we recommend to compute the area of
the triangle with side lengths 3, 4, and 6 using Heron’s Formula.

I a = 3

B 3

I b = 4

B 4

I c = 6

B 6

I s = (a+b+c)/2

B
13

2

I area = Sqrt[s(s-a)(s-b)(s-c)]

B

√
455

4

1.2.4 Input Conveniences

Suppose now we wanted to compute the area of a triangle having sides 4, 6, and 9.
The easiest way is to redo the entire sequence of assignments used above. However, as a
convenience and to conserve some space, we’ll start by entering new values for the variables
a, b, and c in the same input cell as follows:

I a=4; b=6; c=9;

Notice that no output cell was generated here, and that’s because of the semicolon at the
end. The other two semicolons serve to separate the three assignments. Indeed, semicolons
are used in Mathematica for exactly these two purposes:

• they separate expressions and
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• they suppress output when placed at the end of an input cell.

At this point, you might be tempted to think that the area is

I area = Sqrt[s(s-a)(s-b)(s-c)]

B
5i
√

13

4

Clearly, this is not the right answer, since it is a complex number! The problem, of
course, is that the s in the computation still represents the value 13/2. This is an important
observation the first time you make it: when we defined s to be a name for the value of the
expression (a+b+c)/2, its value was computed using the values of a, b, and c at the time,
and not the new values we’ve assigned to these variable.

Indeed, the semi perimeter s must be redefined before a new computation of the area
can be made. To conserve space, we’ll again use a semicolon (the actual value of s is not
necessarily of interest in this case and need not be printed), and then place the expression
for the area on a second line of the same input cell (you press the Return key to advance
to a new line within an input cell).

I s = (a+b+c)/2; (* computes new semi perimeter *)

area = Sqrt[s(s-a)(s-b)(s-c)]

B

√
1463

4

Note that we’ve added an English phrase out the right of the first input line above,
surrounded by the two-character combinations of (* and *). This tells Mathematica that the
phrase “computes a new semi perimeter” is a comment meant only as a helpful reminder for
us of what we’re computing, and that Mathematica should ignore it. We often add comments
to Mathematica input cells whenever we must keep clear as to what we’re computing.

The numerical approximation of this last area calculation, to the default precision of 6
significant digits, is given by:

I N[area]

B 9.5623

A quicker way to see the same result is is use the N symbol in what’s called post-fix syntax,
where is follows the argument instead of preceding it with matching square brackets:

I area//N

B 9.5623

1.2.5 Delayed Assignments (Advanced)

We’ll now very subtlety rewrite the computation of semi perimeter and area above as
follows:

I s := (a+b+c)/2; (* computes new semi perimeter *)

area := Sqrt[s(s-a)(s-b)(s-c)]

What has changed? Notice that no output was generated, and it’s easy to guess it
probably has something to do with the use of the colon-equal combination (“:=”) instead
of the equal sign alone. You’d be right, of course, but let’s see what we’ve gained by doing
this.

First, the values of s and area are still correct, should we ask for them:
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I s

B
19

2
I area

B

√
1463

4

But now, let’s change the sides of the triangle to, say, 10, 13, and 19, with

I a=10; b=13; c=19;

Without re-inputting what you might think are formulas needed to redefine both s and
area, we have:

I s

B 21

I area

B 4
√

231

Why does this happen? This second method of defining both s and area is called a
delayed assignment because of the use of the colon-equal syntax (“:=”). In short, it means
that Mathematica will only figure out what s and area are when you ask for their values,
and not when you define them.

Since s is defined in terms of a, b, and c, the value of s is determined only when you ask
for it, based on the values of a, b, and c at the time you ask for it.

The same is true for the value of area: when you ask for its value, whatever are the
values of a, b, c, and s at that time are used; and since s is determined based by the values
of a, b, and c, it means that we have a whole new area computation anytime we need it
just by changing the values of a, b, and c.

Indeed, a new area computation with side lengths 5, 7, and 11 looks like this:

I a = 5; b = 7; c = 11; area (* note: no semicolon at end *)

B
3
√

299

4

So . . . which should you use: delayed assignments (with “:=”) or immediate assignments
(with “=”)? For most situations, unless there is a specific reason to take advantage of a
delayed assignment, you will want to use immediate assignment. Using delayed assignment
is certainly an important aspect of Mathematica syntax, but using it without a specific
purpose tends to hide the dependencies of one variable upon others.

Nevertheless, when we meet up with functions shortly, you will see the benefits of delayed
assignment.

1.3 Symbolic Formulas and Expressions

Mathematica can not only work with expressions that use variables and evaluate as numbers,
but it can work with expressions in purely symbolic terms.

For example, we have the quadratic formula, where given a generic quadratic equation
ax2 + bx+ c = 0, with a 6= 0, the roots of this equation are given by the Quadratic Formula
to be

−b±
√
b2 − 4ac

2a
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Suppose we were to form this expression in Mathematica for the root that uses the plus
sign (see the subsection that follows about how you can use the Basic Math Assistant to
enter this more naturally and much more cleanly):

I (-b+Sqrt[b^2-4*a*c])/(2*a)

B
1

10

(
−7 + 3i

√
19
)

Wait! We were expecting just an expression with the variable names a, b, and c, but
we got a number (and a complex one at that). The reason is simple: when we were last
using a, b, and c, we had assigned values to these variables, and so the expression above
was evaluated with those values. That’s certainly not what we wanted.

To make Mathematica essentially forget about whatever it’s been doing before with these
variables, you use the Clear command, just before forming the expression. We prefer to
keep everything in the same cell as the expression (this keeps them together both logically
and physically); we’ll define expressions for each of the roots separately (on separate lines
within the same input cell); and, as you should guess, we’ll give each expression a name
(here: root1 and root2) because we’ll be using each below.

I Clear[a,b,c,root1,root2]

root1 = (-b+Sqrt[b^2-4*a*c])/(2*a)

root2 = (-b-Sqrt[b^2-4*a*c])/(2*a)

B

√
b2 − 4ac− b

2a

B
−
√
b2 − 4ac− b

2a

Don’t be confused about the fact that two outputs appeared as the result of a single input
cell (complete input expressions entered on separate lines are suitably separated and each
generates an output). Also, don’t be confused about the fact that the output came out in a
different order – it is correct as it stands, and the output format often depends on personal
settings you’ve made within Mathematica.

The important observation, however, is that we wish to treat a, b, and c as symbolic
quantities on their own. The Clear command guarantees that they are exactly that and
have no meaning already assigned to them.1

Forgetting to appropriately Clear variable names is, by far, the number one
source of problems encountered by students learning Mathematica.

1.3.1 Substitution

Now we’ll use the definition of root1 to find the larger root of the equation 2x2 +5x−6 =
0, you need only evaluate the root1 expression by (the unfortunately-named operation of)
“plugging in the values of a, b and c.” You might think we should use assignments to set
a = 2, b = 5, and c = −6, but that’s not the best approach – doing so would remove the
intended symbolic usage of root1 and root2.

Yet this type of evaluation of an expression for a particular choice of parameters is such
a common operation that Mathematica supplies a substitution mechanism that avoids the
need to explicitly define variables. In syntax, you write:

1Including root1 and root2 in the Clear command would probably be omitted in practice, since the
assignment statements that define them will replace previously assigned values or expressions. However,
should there be a user-defined function named root1 or root2, its definition would now be compromised –
better safe than sorry, here.
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I root1 /. { a→2, b→5, c→-6 }

B
1

4

(√
73− 5

)
The compound symbol “/.” is the substitution symbol, made from the slash and period

characters typed in sequence. Here, it means to evaluate the root1 expression after replacing
a with 2, b with 5, and c with −6, respectively.

The syntax defining the substitutions to be made requires that you specify a variable
name, enter an “arrow” that is made up of the minus sign (“−”) and greater than sign
(“>”) together in sequence, and a value. (You’ll notice that Mathematica will rewrite the
arrow much more nicely after you type it! ) These three substitution rules are separated by
commas and enclosed in curly braces { and }.

The smaller root of the quadratic 2x2 + 5x− 6 = 0 could be written

I root1 /. { a→2, b→5, c→-6 }

B
1

4

(
−5−

√
73
)

It’s easy to confuse the substitution mechanism with the notion of an assignment state-
ment. Because we’ve used substitution, the variables a, b, and c have not been assigned
any value:

I a

b

c

B a

B b

B c

As a result, we’ve therefore protected the symbolic integrity of the expressions named
root1 and root2:

I root1

B

√
b2 − 4ac− b

2a
I root2

B
−
√
b2 − 4ac− b

2a

1.3.2 2-D Input Templates

Since expressions such as the one above that defines root1 are becoming a little more
complicated, now is a good time to introduce you to the Basic Math Assistant (in the
Palettes Menu) for Typesetting. (See Figure 1.) It can help you form expressions in two-
dimensions more easily using the mouse. This will let you see fractions, square roots, and
exponents more clearly.

To define root1 as the expression
−b+

√
b2 − 4ac

2a
in a new input cell (and assuming

that we’ve executed a Clear[a,b,c]), we proceed as follows. (Note how the input expression
nicely reformats as you type.)

• Type “root1:=”.

• Click the fraction button . You’ll see a template created in the input cell with the
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Figure 1: The Typesetting Palette of the Basic Math Assistant

cursor waiting for you to enter the numerator.
• Type “-b+“. It will appear in the numerator of the fraction.

• Click the square root button . The cursor is now located under the radical sign.

• Click the exponent button . The cursor is now positioned in the base box of the
exponent template.
• Type “b”.
• Press the Tab key. This moves the cursor up to the exponent box.
• Type “2”.
• Press the right arrow key to move to the right of the b2 expression
• Type “-4ac”.
• Press the Tab key. This should move the cursor to the denominator.
• Type “2a”.
• With the expression now constructed, press the Enter key on the numeric keypad, or

Shift-Return on the keyboard, to evaluate the expression.

Any expression you form using buttons and templates in a palette can be edited directly,
should you make a mistake, just by clicking in the input expression at the proper level
and editing as usual (although it may take a little practice to properly place the cursor
in the exponent, for example). The Tab and arrow keys can also be used to navigate the
expression.

Should you always use typesetting help from the Basic Math Assistant? We recommend
that you do, since it’s less likely that you’ll make a syntax mistake, because you can see
exactly what the expression is as you type. It may take a little thought however, to figure
out the right sequence of buttons to click.

Further, by clicking on the button bar along the top of the Typesetting palette, more
templates and buttons will be revealed, making it easy to enter common symbols such as
the natural exponential base e, the complex constant i, the infinity symbol ∞, and Greek
letters such as α. You’ll find this very convenient when the time comes to use such symbols.
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Finally, many of the templates and symbols available in the Typesetting palette have
keyboard equivalents. For example, the square root template can be chosen by typing
Control-2, and the fraction template can be chosen by typing Control-/. The α character
can be typed directly using the sequence Escape-a-Escape. (Helpful aid: If you hover
the mouse over any button in a palette, its tool tip will display the associated keystroke
sequence.)

Given all these variations of how you can enter input, it’s up to you to find how you can
work with Mathematica most easily. Experiment!

Note. For this text, we will display input almost all the time without using a typesetting
palette or control key sequence alternative. This is easier for preparing this publication,
and the result is always more clear in print when you see the keystrokes. However, as a new
Mathematica user, we strongly recommend that you use the typesetting palettes for entering
expressions, primarily because you’ll be able to see the expression on-screen more clearly
and avoid mistakes cause by precedence rules.

1.4 Predefined Constants

Some common values mathematicians use are the transcendental numbers π and e. Math-
ematica already knows these constants under the names Pi and E, respectively.2 It’s easy
to find the first fifty significant digits of π and e:

I N[Pi,50]

B 3.1415926535897932384626433832795028841971693993751

I N[E,50]

B 2.7182818284590452353602874713526624977572470937

There are other, predefined values in Mathematica (e.g., the Catalan and Fibonacci
numbers) and all of them begin with an upper-case letter. The following table lists some
commonly-used constants in Mathematica.

Constant Value Explanation Mathematica

π 3.1415926. . . Ratio of a circle’s circum-
ference to its diameter

Pi

e 2.71828. . . Natural Exponential E

i
√
−1 Imaginary Number I

π

180
.0174532 Degree to radian conver-

sion multiplier
Degree

∞ ∞ (positive) infinity Infinity
1+
√

5
2 1.61803 Golden Ratio derived

from Fibonacci Sequence
GoldenRatio

1.5 Built-in Functions

You’ve already seen the use of the N and Sqrt commands, or equivalently, functions.
And just as any calculator has several dedicated buttons for commonly-used functions,
Mathematica has an extensive list of built-in functions, including not only N (for numeric
approximation) and Sqrt (for square root), but also Log (for the natural logarithm), Sin

2Each of these symbols is available in a concise, printed format in the Basic Math Assistant.
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(for sine), and ArcTan (for arctangent). All Mathematica function names start with an
upper-case letter and all use square brackets to designate their argument(s). For example,

I Sin[Pi] (* sinπ = 0 *)

B 0

I ArcTan[1] (* tan(π/4) = 1, so tan−1(1) = π/4 *)

B
π

4

The following table lists some of the most commonly encountered functions.

Function(s) Sample(s) Mathematica Name(s)

natural logarithm ln(x) Log

exponential ex Exp

absolute value |x| Abs

square root
√
x Sqrt

trigonometric sin(x),
cos(x), etc.

Sin, Cos, Tan, Cot, Sec,
Csc

inverse trigonometric sin−1(x),
cos−1(x),
etc.

ArcSin, ArcCos, Arc-
Tan, ArcCot, ArcSec,
ArcCsc

hyperbolic sinh(x),
cosh(x),
etc.

Sinh, Cosh, Tanh, Coth,
Sech, Csch

inverse hyperbolic sinh−1(x),
cosh−1(x),
etc.

ArcSinh, ArcCosh, Arc-
Tanh, ArcCoth, Arc-
Sech, ArcCsch

Among those listed above, note that the logarithm function can have a second argument.3

To compute a logarithm to a base other than the standard base e, say to compute log2(8),
you write (putting the base of 2 first, and then the argument 8):

I Log[2]//N (* ln 2 ≈ 0.693147 *)

B 0.693147

I Log[2,8] (* log2(8) = 3 since 23 = 8 *)

B 3

We’ll work with functions in more detail in the next Chapter, and we will show how you
can define your own functions.

1.6 Final Details

1.6.1 Complex Numbers and Surd

Mathematica treats all expressions that you use over the complex numbers (we’ve seen
at least one mention of this previously). In many cases, this is the mathematically correct
thing to do – but when you’re using the software mostly for Calculus or simple statistics,
you may sometimes find that this strategy gets in your way.

3If more than one argument is required for the function, the arguments are separated by a comma (or
commas).
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Consider trying to find the cube root of −1, written as 3
√
−1 = (−1)1/3. Symbolically, we

enter:

I cuberoot = (-1)^(1/3)

B 3
√
−1

It probably surprises you to see that Mathematica has not simplified this expression –
but it is exact as it stands without simplification. Importantly, the result does have the
property that its cube gives the value −1:

I cuberoot^3

B −1

Numerically, though, the value of cuberoot is not the −1 you expect:

I N[cuberoot]

B 0.5 + 0.866025i

Mathematica has reported a numerical approximation for 3
√
−1 that is symbolically 1

2 +
√

3
2 i. If you understand complex numbers, you should check (by hand! ) that

(
1
2 +

√
3

2 i
)3

=

−1. In fact, there are two other complex numbers whose cube is −1, namely −1 or 1
2 −

√
3

2 i,

and this is why Mathematica was unwilling to simplify 3
√
−1 because it would have to choose

one of the three values.

When we ask for a numeric approximation, however, Mathematica is forced to choose one
of the roots, and chooses the one that is sometimes called the principal cube root of −1.

Version 9 of Mathematica has introduced a new built-in function named Surd specifically
to handle the problem of interpreting the nth root of an expression (presumably a numeric
expression) to be a real number. Thus we have

I Surd[ -1, 3] (* the 3 is for the third root *)

B −1

Similarly, to handle the more general case of fractional exponents correctly for real num-
bers, the default behavior of Mathematica reports

I (-1)^(3/5) // N

B −0.309017 + 0.951057ı

However, using Surd requires an integer root, and since (−1)3/5 =
(
(−1)3

)1/5
represents

the fifth root of (−1)3, we have

I Surd[ (-1)^3, 5] (* the 5 is for the third root *)

B −1

1.6.2 When Mathematica Complains About Expressions

When you enter long expressions for Mathematica to evaluate, you’ll certainly make
(hopefully not too many) mistakes. It’s easy to leave off a parenthesis, or perhaps add an
extra one, especially when expressions get complicated.

If an expression is evaluated by Mathematica that doesn’t make syntactic sense, Mathe-
matica will already have alerted you with its coloring of the input expression, as we discussed
earlier. If you hadn’t noticed the syntax problem and evaluated the input, Mathematica’s
response will be to highlight the offending text and highlight the input cell’s bracket with a
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little + to click on, so you can see an error message.

I 3*(4-5))+6

B Syntax::bktmop: Expression “3*(4-5))” has no opening “(”.

Here, the input expression’s error has been correctly identified as having an extra right
parenthesis in it with no matching left parenthesis. Parsing of the expression had to be
terminated because not enough left-parentheses (looking left-to-right) had been scanned so
that the second right parenthesis would be meaningful when it was encountered.

For other types of errors beyond the simple syntactic mismatching of parentheses, more
cryptic messages may be issued, such as this:

I 5/0

B Power::infy: Infinite expression
1

0
encountered.

ComplexInfinity

Here, the expression we entered made syntactic sense – at least in form – but we tried to
execute a division by zero. This may not be obvious from a result such as ComplexInfinity
(which makes perfect sense if you understand the complex number system), so you must
be prepared. Mathematica, or for that matter, any piece of software, will not be able to
correctly detect or report all your errors in a way you’ll understand, since it has no way of
figuring out exactly what you’re thinking.

You’ll not understand every error message you see. Try not to get too frustrated while
you’re learning Mathematica and getting used to its environment.

1.6.3 Brackets and Curly Braces

One of the most basic of all Mathematica syntax constructions involves the use of curly
braces { and }. We’ve seen only one instance of this so far when we introduced the notion
of a substitution list, such as { x→3, y→4 }. (This particular substitution list has two
expressions, each being a substitution rule, and the rules are separated by a comma and
enclosed in the curly braces.)

Many inputs to Mathematica that we’ll use in the future will require list syntax, and
you’ll begin to see that outputs received from Mathematica will be lists, or even lists of lists.
Carefully inspect any syntax that uses curly braces { and } and be sure you can identify
the items that make up the list.

However, despite our limited use of lists so far, it’s important to know that

Curly braces { and } can only be used with lists, and can never be used in place
of parentheses to group terms in an expression.

We’ll see many more examples of lists shortly.

Similarly, you’ve seen the use of built-in functions such a N and Sqrt and Sin and ArcTan
and Log – and with each appearance, you’ve see square brackets [ and ] used. For example
(using the newfound list syntax mentioned above!):

I {Log[E], Cos[Pi], Sqrt[9]}
B {1,−1, 3}

A similar warning must be added here about when you can use square brackets [ and ]:

Square brackets [ and ] can only be used with functions to identify the arguments
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(inputs) of those functions, and can never be used in place of parentheses to
group terms in an expression.

1.6.4 Approximate versus Exact

A basic principle of Mathematica is that every numerical expression is managed by default
as an exact quantity, unless you ask for its approximate numerical value or introduce an
approximate numerical into the expression.

Consider just the difference between the exact number π and its approximate numerical
value. Evaluation of the sine function at π certainly produces the expected, exact result of
zero:

I x = Pi; (* x references an exact quantity *)

Sin[x]

B 0

However, if we replace π by its approximate numerical value, the result is no longer zero:

I x = Pi//N; (* x references an approximate numerical value *)

Sin[x]

B 1.22465× 10−16

Because x does not represent an exact quantity, Mathematica cannot produce an exact
result. Of course, the result is very close to zero (the result is 0.000000000000000122465),
functioning now as an approximate numerical value for zero, and this may still be acceptable
in many practical situations.

The same situation results whenever approximate numerical values are introduced into
a computation. For example, it is the case that Mathematica treats the quotient 275

55 = 5
exactly, and hence we have

I x = 275/55 Pi; (* x references the exact quantity 5π *)

Sin[x]

B 0

However, should the expression defining x contain any term that represents an approxi-
mate numerical value – such as a decimal number with a decimal point – everything changes.
In particular, the division 2.75

0.55 = 5.0 contains decimal points and is thus treated as having
an approximate numerical value

I x = 2.75/0.55 Pi; (* x references an approximate numerical value *)

Sin[x]

B 6.12323× 10−16

Neither of the outputs above would significantly impact a numerical computation; but
it’s not very difficult to see how the use or (abuse) of approximate numerical values can
degrade a computation. Be sure you understand the difference in these two computations:

I x = (123456789^3)*Pi; (* 1234567893 × π is an exact quantity *)

Sin[x]

B 0

I x = (123456789^3)*Pi//N; (* x has an approximate numerical value *)

Sin[x]

B −0.955171
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The last result is far from correct – we perhaps expect it to be 0 exactly – yet the value
produced is meaningless and in no way could be considered anywhere even “close” to 0,
especially since values of the sine function are confined to the interval [−1, 1].

This same type of problem appears on a calculator, which can represent values only to
so many digits; and when computation after computation is made with quantities having
limited precision, the result can be meaningless. The subject of analyzing how loss of
precision affects computations is beyond what we can describe here, so we state:

Unless you have a reason to do otherwise, always form expressions in Math-
ematica using exact terms, and avoid the use of N or decimal points within
expressions.

1.6.5 List of Symbols

The following table contains most of the symbols we introduced in this Chapter.

Symbol(s) Use or Meaning

+ Addition
− Subtraction

* (or a space) Multiplication
/ Division
ˆ Exponentiation
! Factorial
= Assignment
:= Delayed Assignment
% The previous result
; Separation & Output Suppression
/. Substitution

( and ) Used for grouping terms in an expression
{ and } Delimiters for (substitution) lists
(* and *) Delimiters for comments
[ and ] Delimiters for function arguments

, Separator within (substitution) lists
-> Substitution rule
? Information (or Help) Operator

1.7 Exercises

1. Order the following five values from smallest to largest:

7.149π, πe, eπ,

(
1 +
√

5

2

)11π/5

, (2 + e)π−1

2. Enter each of the following constant expressions in Mathematica, and give it a name
(e.g., expr) using the equal sign. After verifying that Mathematica responds with the
correct expression symbolically, use the syntax “N[expr]” to evaluate the expression
numerically.

(a) π2+e

(b)

√
e− 1

π − 2

(c)
sin(1)− 6

5− ln 2
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(d)

∣∣∣∣sinh

(
π − 5

log3 37

)∣∣∣∣
(e)

tanh−1(1/2)

2− tanh (3)

(f) e
√

5

(g) 3
√

53 + eπ
2−1

3. Enter each of the following symbolic expressions in Mathematica, and give the expression
a name (e.g., expr) using the equal sign. After verifying that Mathematica responds
with the correct expression symbolically, use the substitution syntax “expr /. { x→ }”
to evaluate it symbolically at the indicated value, and then execute “N[%]” to evaluate
the result numerically.

(a)

√
esin(1+x)

1 + cosx
, when x = 0.

(b) ex
3

, when x = 2.

(c)
1 +
√

16− x2

2x
, when x = 3.

(d) |4 cosx+ π|, when x = π.

4. Suppose that ` is the line through the points (x1, y1) and (x2, y2).

(a) The distance from (x1, y1) to (x2, y2) is given by√
(x2 − x1)2 + (y2 − y1)2

Form the expression symbolically, and evaluate it using substitution when (x1, y1) =
(1, 2) and (x2, y2) = (4, 6).

(b) The slope of the line ` is given by
y2 − y1

x2 − x1
. Form the expression symbolically, and

name the expression slope. Evaluate slope using substitution when (x1, y1) = (1, 2)
and (x2, y2) = (4, 6).

(c) Form the expression − 4
3x + y − 2

3 symbolically. Show that zero is obtained when
substituting (x, y) = (1, 2) and (x, y) = (4, 6) (hence the equation for the line
through these two points must be − 4

3x+ y − 2
3 ).

(d) The distance from a line with equation ax+ by + c = 0 to a point (p, q) not on the

line is given by the expression
|ap+ bq + c|√

a2 + b2
. Form this expression symbolically, and

evaluate it exactly and numerically for the line of part c when (p, q) = (π+2, e−1).

5. If you finance a loan with a total amount of loan, at an annual interest rate of interest,
for a period of months, then the monthly payment on the loan is given by the formula:

payment = (loan)
1− r

(1− rmonths) · r
, where r =

12

12 + interest

(a) Form symbolic expressions for the terms r (in terms of interest) and payment (in
terms of loan, r and months) using delayed assignment, and evaluate each symbol-
ically to check that they are entered correctly.

(b) Using these formulae, suppose a new automobile is financed with a loan of $21,000
over a five year (60 month) period at 9% interest. Find the monthly payment for
the loan.

(c) Using these formulas, consider the purchase of a home costing $270,000 for which
the buyer will make a down payment of $35,000, and finance the loan for 30 years.
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For each of the interest rates 5.0%, 5.5%, 6.0%, 6.5%, and 7.0%, find the amount
of interest paid on the loan over its lifetime.

6. Find the area of the triangle that has vertices at the points (0, 0), (5, 1) and (3, 2).

7. Find the area of the quadrilateral that has vertices at the points (0, 0), (6,−1), (7, 5)
and (−2, 4). (Suggestion: break the quadrilateral into two triangles.)

8. Stirling’s formula provides an approximation for n!, in the form

n! ≈
√

2πn
(n
e

)n
Formulate this expression symbolically, and evaluate it numerically using substitution,
for values of n = 20, 40, 80 and 160. Compare your results with 20!, 40!, 80! and 160!
Are the values close?

9. Evaluate the quantity

∣∣√2πn
(
n
e

)n − n!
∣∣

n!
for each of the values in the previous exercise.

Why it is appropriate to say that “Stirling’s Formula approximates n! with an error on
the order of 1

n .”?

10. Find the smallest positive integer n that satisfies n! > n10 + n6 + 10.

11. The expression 4
(
tan−1(1/4) + tan−1(3/5)

)
is a well-known mathematical constant.

Which constant is it?

12. We propose that n( n
√
n−1) is a good approximation for ln(n). Evaluate each expression

for n = 20, 40, 80 and 160, and decide whether this is true. Comment on what is you
think is meant by the phrase “a good approximation”.

13. Find the integral power of 3 that is closest to each of one million, one billion and one
trillion.
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2 Functions

We learned in the previous Chapter that Mathematica already has many built-in functions
(e.g., the trigonometric, logarithmic, exponential, and hyperbolic functions). Many others
are already defined as well for specialized applications (e.g., the Bessel functions), although
we’ll see only a few in the sequel. In this Chapter, we introduce the syntax you need to
define your own functions.

2.1 Defining Functions

A function f of a single, real variable is defined by stating its rule of assignment for each
element in its domain.

Example. The function that you normally write as f(x) = x2 is the function which, for
each real number x, assigns the square of the number. The domain of this function is all real
numbers (these are numbers which can be input to the function) and the rule of assignment
is “square the input” (which determines the output from a given input).

Notice that the role of the symbol x in the formula-like definition f(x) = x2 above is that
of a place-holder; you could equally well write f(t) = t2 to define exactly the same function.

In Mathematica, you define the square function above with the following input. (Note.
You’ll receive no output response for this, and you’ll also see a new coloring scheme as each
of f and x are typed.)

I Clear[f] (* be sure f conflicts with no other names *)

f[x ] := x2 (* use the Basic Math Assistant to typeset x2 *)

In the syntax of the definition above, notice that we’ve once again wrapped in the use of
Clear with the definition we’re making for f .

Use of Clear was emphasized in the previous Chapter, and it becomes all the
more important to include it when defining functions.

Next you see square brackets [ and ], which designate exactly that f will represent a
function. What appears between the square brackets define what the inputs to f will look
like – in this case, that there will be a single input (which we probably intend to be a
number, but it can more generally be any single expression).

The symbol combination x appearing on the left side of the expression is typed as
the two-character sequence “x” and then the underscore character “ ”. This syntax says
exactly that “x” will be only a place-holder to represent the single variable of the function
in the rule of assignment that is to follow, and guarantees that it will not conflict with any
other symbol x Mathematica might know about at the time of definition.4

The use of Mathematica’s delayed assignment operator “:=” in the definition means that
only the symbolic expression xˆ2 that appears on its right side is to be associated with the
symbol f[x ], not that the value of the expression xˆ2 is to be assigned to the symbol
f[x ]. In short, the syntax describes the rule of assignment as “square the input,” without
confusing x to mean the value of some other expression we might have at the time.5

4The expression x used in this definition forms what is known as a replacement pattern or pattern
variable in Mathematica.

5The subtlety of this statement – and how using “:=” differs from what you think should probably be
just “=” – appeared briefly in the previous Chapter and will become more clear in the future. But it is
almost always the case that you will use the “:=” combination when defining functions, unless you have
specific reasons not to use it.
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If you want to see whether Mathematica’s recorded your definition of f correctly, the best
way to ask is with

I ?f

B Global`f
f[x ] := xˆ2

This is somewhat of a new statement for us – we use the question mark ? to ask Math-
ematica what it knows about the name that follows the question mark. We see above that
Mathematica reports back the definition, and includes more info about the fact the f is
known in its global context. Until you gain proficiency with Mathematica and need to know
more about contexts, we’ll simply state that every name you introduce in Mathematica will
live in the global context, and you should otherwise ignore the context qualifier.

A simple evaluation of the mathematical expression f(3) = 32 = 9 is given with:

I f[3] (* functions use [ and ] and not parentheses! *)

B 9

Here, Mathematica has evaluated the expression f[3] by substituting for it the expression
3ˆ2, producing the simplification of 9. Similarly, evaluation of f(−4) = (−4)2 = 16 is
reproduced by Mathematica as:

I f[-4]

B 16

Again, Mathematica evaluated the expression f[-4] by substituting for it the expres-
sion (−4)2, producing the simplification of 16. Indeed, in the future, any expression that
Mathematica evaluates of the form “f[something]” will be replaced by the expression “some-
thingˆ2” and then evaluated.

This principle applies even for symbolic expressions and other variables. If a variable a
has already been defined, then evaluating f at a produces the correct result:

I a = 5;

f[a]

B 25

In this case, the expression f[a] is replaced by the expression f[5], which in turn is replaced
by the expression 52, yielding the result 25. Symbolically, this sequence of replacements
could be recorded by the sequence

f [a]→ f [5]→ 52 → 25

If a has not yet been previously defined to have a particular value as a variable, but only
represents an arbitrary symbol, evaluation of f[a] produces a correct symbolic result:

I Clear[a]; f[a]

B a2

In fact, any expression passed as the argument to f will produce a proper evaluation:

I Clear[b,c]; f[b-c]

B (b− c)2
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2.1.1 Using the Function Template

The syntax of function definition is perhaps the most important notational aspect of using
Mathematica to do mathematics, yet more errors in Mathematica are probably introduced
because of incorrect use of the syntax.

For this reason, the Advanced tab of the Basic Math Assistant’s calculator provides an
automatic template that you can fill in with the proper syntax. Look first for the button
marked “Define Function” (third row at the left).

Clicking the Define Function button will introduce the following arrangement into the cur-
rent input cell, creating a new input cell if necessary.

Start by typing f (which appears immediately in the name box of the template).

Now press the tab key to advance to the var box of the template and type the variable x.

Pressing the tab key one more time will move you to the expr box of the template, where
you can now enter the rule of assignment for the function (not shown here).

When you use the template, notice that you do not have to enter any of the underscore
character (“ ”), the square braces [ and ], or the colon-equal (“:=”). You can focus on

• picking a name for the function
• pressing the tab key and choosing a name for the variable
• and pressing the tab key and entering the expression for the rule of assignment.

2.1.2 Composition of Functions

Mathematically, if f and g are (suitable) functions, we can form new functions h and
k by defining h(x) = f(g(x)) and k(x) = g(f(x)), called the compositions of f and g.
Understanding compositions is an important aspect in Calculus and, the good news is that
Mathematica follows a natural syntax.

Example. If f(x) = 2x+ 5 and g(x) = 3x, then we have

f(g(x)) = f(3x) = 2(3x) + 5 = 6x+ 5

and
g(f(x)) = g(2x+ 5) = 3(2x+ 5) = 6x+ 15
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Not surprisingly, these two composite functions are different, since order matters in a com-
position. Indeed, the operation of f(g(x)) of “multiply by 3” and then “multiply the result
by 2 and add 5” does not result in the same computation of g(f(x)), which is “multiply by
2 and add 5” and then “multiply the result by 3.”

In Mathematica we have what should be the obvious syntax for composition

I Clear[f,g] (* we always precede with a Clear *)

f[x ] := 2x+5 (* and we keep all together in one input cell *)

g[x ] := 3x

I Clear[x] (* we’re thinking symbolically in x *)

f[g[x]]

B 6x+ 5

I g[f[x]] // Expand (* expands the result, else we get 3(2x+5) *)

B 6x+ 15

2.1.3 More than One Variable

Beginning students in mathematics often think of functions only in the form f(x), but
most practical uses of functions involve more than a single variable.

Example. If the automobile has traveled m miles, in the span of t minutes, then it has
traveled for t

60 hours, and its average speed in miles per hour will given by the expression
m

(t/60) = 60m
t . It is sensible to define the average speed function “f(m, t) = 60m

t .”

More complex examples might be encountered in modeling economic situations. The
growth rate of a national economy might depend upon several factors: the unemployment
rate u, worker productivity p, trade deficit t, and prevailing interest rate i. Such a function
would be modeled in the form f(u, p, t, i), where the computation of the economic growth
would depend on and be determined by these factors.

In Mathematica, the “speed” function depending upon mileage covered and time taken
described above would be given by:

I Clear[speed];

speed[m ,t ] := m/(t/60)

The function above has two arguments, each of which appears as a pattern variable on the
left inside the square brackets, and they are separated by a comma. The definition of the
distance computation in terms m and t appears on the right side of the delayed assignment
:=.

For example, if a distance of 45 miles is traveled in 30 minutes, the average speed in miles
per hour is given by:

I speed[45,30]

B 90

Traveling 60 miles in 50 minutes produces an average speed in miles per hour of:

I speed[60,50]

B 72

Example. A function that gives one of the (assumed) real roots of a quadratic polynomial
p(x) = ax2 + bx+ c can be defined in terms of the coefficients a, b, and c. Indeed, it makes
sense to think of a root function “f(a, b, c),” whose value is given by the quadratic formula
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−b+
√
b2 − 4ac

2a
:

I Clear[f]

f[a ,b ,c ] :=
−b+

√
b2 − 4ac

2a
(* Basic Math Assistant used *)

For example, to compute one root of the polynomial x2 − 3x− 10, you can evaluate:

I f[1,-3,-10]

B 5

2.1.4 Piecewise Defined Functions

Not every useful function can be easily defined by a single formula or closed expression.
The simplest example of such a function is a step function such as:

f(x) =

{
1, x ≥ 0

0, x < 0

A function of this type is said to be defined piecewise, in that the domain of the function
(here, all real numbers) is split into disjoint pieces or branches, and a separate rule of
assignment is used for each branch.

We can define f in Mathematica using the Piecewise command with the syntax:

I Clear[f]

f[x ] := Piecewise[ { {1,x>=0} , {0,x<0} } ]

In this form of the Piecewise command, we see the usual square brackets [ and ] on the
right, and only a single argument that is a list of the branch definitions enclosed by curly
braces { and }. Inside these curly braces, we see two additional pairs of curly braces, one for
each branch of the function, separated by commas. Each of the pairs that defines a branch
consists of a value for the function and the logical condition that must be satisfied to use
this branch.

We must digress (only quickly) to show how one forms logical conditions used in defining
the branches. The ≥ sign is entered by typing the two-character sequence >= (which you’ll
see Mathematica reformat as ≥ as you type). The following table shows how other logical
conditions should be entered.

Logical Connective Meaning In Mathematica

< Less than <

≤ Less than or Equal To <=

> Greater Than >

≥ Greater Than or Equal To >=

= Equal To ==

6= Not Equal To !=

and And &&

or Or | |

The definition of the function f could also have been written using the alternate syntax

I Clear[f]

f[x ] := Piecewise[{ {1,x>=0} }, 0 ]
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Here, after entering just a single condition that defines the first branch inside curly braces
as before, we add a second argument following a comma to define whatever will be the default
value of the function, i.e., the value to be used if none of the conditions defining the branches
is satisfied. That is, we have the definition

f(x) =

{
1, x ≥ 0

0, otherwise

More branches can, of course, be included when defining a piecewise function. Consider,
for example, the following

h(x) =


1− x, if x < 0

x2, if 0 ≤ x ≤ 1

x+ 2, if x > 1

The corresponding input for Mathematica would be

I h[x ] := Piecewise[{ {1-x,x<0}, {x^2,0<=x<=1}, {x+2,x>1} }]
(Note that Mathematica even makes sense of the compound condition for the specification

of h in the interval [0, 1].) Because the function definition has started to become syntactically
complex, it will help you if you visually format a Piecewise expression by explicitly pairing
the conditions and values, one to a line, such as with:

I h[x ] := Piecewise[{
{1-x,x<0},
{x^2,0<=x<=1},
{x+2,x>1}
}]

2.1.5 Recursively Defined Functions (Advanced)

A recursive function is one that is defined in terms of itself.

Example. The most common, recursive function with which you’re already familiar is the
factorial function, defined for every non-negative integer n to be

n! =

{
1 if n = 0

n× (n− 1)! if n > 0

Thus, 0! is 1, 1! is 1× 0! = 1× 1 = 1, and even at this level, the computation of 2! according
to the definition becomes cumbersome, since

2! = 2× 1! = 2× (1× 0!) = 2× (1× 1) = 2× 1 = 2

And on it goes.

Example. Another commonly-known example is the definition of the Fibonacci numbers
c0, c1, c2, . . .. Here, we define, for each non-negative index n, the value

cn =

{
1 if n = 0, 1

cn−1 + cn−2 if n ≥ 2

The first three Fibonacci numbers are c0 = 1, c1 = 1, c2 = c1 +c0 = 1+1 = 2, and these are
the start of the sequence 1, 1, 2, 3, 5, 8, 13, 21, . . ., where each term is the sum of two previous
terms.
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Mathematica can handle each of these definitions easily. Indeed, the factorial function
could be written as

I Clear[f]

f[0] = 1;

f[n ] := n * f[n-1]

The Fibonacci numbers could be written as

I Clear[c]

c[0] = 1; c[1] = 1;

c[n ] := c[n-1] + c[n-2]

We won’t go any farther into recursively-defined functions at this point, since, as simple
as they may seem, they require more attention to detail than directly computable functions
such as f(x) = x2. For example, the following input would drive Mathematica crazy (and
do you see why?)

I f[-1]

Nevertheless, should it become convenient to use a recursive definition in the future, we’ll
not shy away from it.

2.1.6 Modules (Advanced)

Function definitions may sometimes require more than a direct, one-line calculation. This
may be the case either because of the need to use intermediate calculations, or even the
complexity of the function definition itself.

A simple example of the complexity problem is the calculation of the area of a triangle
using Heron’s formula. Clearly, it would be convenient to write an area function of three
variables in the form:

I area[a ,b ,c ] := an expression to be evaluated

However, the area calculation was conveniently broken down into the two-step process of
first computing the semi-perimeter s = (a + b + c)/2, in terms of the three sides a, b, and
c of a triangle; and then forming the expression

√
s(s− a)(s− b)(s− c) to give its area.

Essentially, two separate evaluations must be performed, with the second of these giving the
value of the area function.

You could, of course, write out the expression under the radical in this calculation by
eliminating the semi-perimeter s with√(

a+ b+ c

2

)(
a+ b+ c

2
− a
)(

a+ b+ c

2
− b
)(

a+ b+ c

2
− c
)

This would be cumbersome at best to enter in Mathematica, since the necessary syntax
would require many characters written over multiple lines, and is likely to have mistyped
characters or even mismatched parentheses.

Additionally, the simplicity of the area calculation as
√
s(s− a)(s− b)(s− c), where s =

(a+ b+ c)/2, has been lost.

To handle this situation, we will use the Module operator. It allows us to use interme-
diate variables and results (such as the computation of the semi-perimeter s) and collect
them together to produce a single result.

The definition of the area function, using the Module syntax, will be written as follows:
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I Clear[area]

area[a ,b ,c ] := Module[

{s},
s = (a+b+c)/2;

Sqrt[s(s-a)(s-b)(s-c)]

]

We start to unravel the syntax above as follows. At the outer level, the result of the area
calculation shown after the := has the form

I Module[ { variable } , statement ; statement ]

The curly braces that appear first contain the name(s) of any intermediate variable(s)
used in the calculation. The area function above will use the intermediate variable s to
compute the semiperimeter. Importantly, though, the symbol s will be distinct from any
other symbol s that might be known by Mathematica. Further, once the area computation
is completed, the symbol s used here will simply no longer exist.

Following the curly braces is a comma, and following the comma are the two statements
that in sequence perform the area calculation. These are separated by a semicolon (and
note in particular that no semicolon follows the last statement). The value of the last
computation made becomes the value of the function.

2.2 Final Details

2.2.1 Lists and Curly Braces Revisited

You’ve already seen situations where Mathematica syntax requires curly braces { and }.
Examples would include

• A substitution list such as { x→3, y→4 } that we used in the previous Chapter
• A branch of a piecewise-defined function such as {x+1, x>0}
• A list of branches of a piecewise-defined function such as { branch #1, branch #2, . . .}
• The first argument for a Module that defines intermediate variables such as {s}
In each case, one or more items were contained inside the curly braces, with multiple

items being separated by commas. This is one of the most basic of all Mathematica syntax
constructions and is called a list.

Many inputs to Mathematica require list syntax and outputs received from Mathematica
often are in the form of a list. For example, the graphing operators you’ll see in the next
Chapters use list syntax quite a bit, so be prepared. Carefully inspect any syntax that uses
curly braces { and } and be sure you can identify the items that make up the list.

Finally, the only use of curly braces in Mathematica is for lists. Curly braces are never
used for grouping terms in expressions. In the sequel, we’ll describe list syntax intricacies
only as needed; Appendix A has more complete information on list structures.

2.2.2 Complex Numbers

As we mentioned in the previous Chapter, Mathematica works in the complex number
system, while most beginning users of Mathematica assume that everything in life is a real
number. As a result, you’ll occasionally think that a function definition must be incorrect
when, in fact, the definition is correct in the complex sense – it just appears to not work in
the real number system.

Example. If we define f(x) = x2/3, then mathematically we have f(−8) = 4, since
(−8)2/3 = 3

√
(−8)2 = 3

√
64 = 4.
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In Mathematica, the function definition below initially appears to work.

I Clear[f]

f[x ] := x2/3 (* Basic Math Assistant used *)

I f[8] (* 8 squared is 64, cube root is 4 *)

B 4

But we next see

I f[-8] (* -8 squared is 64, cube root is 4 *)

B 4(−1)2/3

The natural response is the think that maybe there’s something wrong with the function
definition – but there’s nothing wrong with it at all in the complex sense (review the section
on complex numbers in the previous Chapter on this point about the meaning of (−1)2/3).

Rather, if you’re interested in the real-valued function f(x) = x2/3, or any function whose
definition involves the use of a rational exponent, remember to incorporate the Surd function
in its definition. The proper definition in this case should be

I Clear[f]

f[x ] := Surd[x2,3]

2.3 Exercises

1. The area of a circle is given by the formula A = πr2, where r is the radius of the circle.
Define the area function in Mathematica, and demonstrate its use to compute the areas
of the circles whose radii are 4, 9, and 3.14.

2. Define f(x) = 3x+ 19 and g(x) = 1
3 (x− 19). Use Mathematica to show (algebraically)

that these are inverse functions – i.e., that f(g(x)) = x and g(f(x)) = x.

3. Let m and b be constants, with m 6= 0.6 Define f(x) = mx + b and g(x) = 1
m (x − b).

Use Mathematica to show (algebraically) that these are inverse functions – i.e., that
f(g(x)) = x and g(f(x)) = x.

4. An ellipse with a semi-major axis of length a and a semi-minor axis of length b has a
perimeter of approximately

f(a, b) = 2π

√
a2 + b2

2

Define this function in Mathematica, and use it to approximate the perimeter of an
ellipse having a major axis of length 5 and a minor axis of length 4.

5. Consider a right, circular cone with base radius r and height h. Define each of the
following functions in Mathematica:

(a) The volume function V = f(r, h) = 1
3πr

2h, and

(b) The surface area function S = g(r, h) = πr2 + πr
√
r2 + h2.

Evaluate each of these quantities for the circular cone having radius 4 and height 11.

6You should not try to tell Mathematica explicitly to “assume that m is not zero” to do this computation.
Just do the computation. Yes, we mathematicians worry about the statement that follows when m = 0
when we’re writing mathematics; but Mathematica will continue to carry out computations for you and
then let you worry on your own about special cases such as m = 0.
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6. If a triangle has sides of length a, b and c, the radius of its circumscribed circle (the

circle through its three vertices) is r = f(a, b, c) =
abc

4k
, where k is the area of the

triangle (the area can be computed using Heron’s formula).

Write a definition of this radius function in Mathematica, and use it to find the radius
of the circumscribed circle for a triangle having sides 4, 7 and 10. (Suggestion: use a
Module construction.)

7. The length of the parabolic arc from (0, 0) to (x, y) along the parabola y2 = x is given
by the arc length function f valid for points (x, y) = (x,

√
x) on the curve in the first

quadrant by writing

f(x, y) =
u+

y2 ln

(
2x+ u

y

)
2x

2
where u =

√
4x2 + y2

(a) Write a function of two variables f(x, y) that computes the length of the arc from
(0, 0) to (x, y), according to the formula above. Use a Module construct in your
definition.

(b) Use the function you defined in part a to evaluate the arc length at the points (4, 2)
and (9, 3).

8. Bus fares on the local transit system are determined according to the rider’s age. Chil-
dren 6 years of age and less ride for free; senior citizens (age 65 or higher) ride for 10
cents, and all others ride for 50 cents. Write a Mathematica function to represent this
fare structure, and test its value for riders 5, 36, and 71 years old.

9. The function

g(x) =

{
2x, 0 ≤ x ≤ 1

2

2x− 1, 1
2 ≤ x ≤ 1

defined on [0, 1], is called the baker’s transformation, because of the following interpre-
tation. Consider a gob of dough of length 1 that is to be kneaded in a certain fashion.
If a point of the dough is a distance x from the end, with 0 < x < 1, let g(x) represents
its position after kneading the dough once.

Define the function g, and determine (using repeated evaluations of the function g) the
sequence of positions attained by the point of dough starting at x = 1

10 through several
transitions. Is there a pattern?
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3 Graphs of Functions

This Chapter shows how to plot the graphs of functions in Mathematica.

3.1 Drawing the Graph of a Function with Plot

Consider beginning with the definition of a familiar function, such as:

I f[x ] := x^2

To plot the graph of a function such as f(x) = x2 above, we use Mathematica’s Plot
operator. To see the graph over, say, the interval [−2, 3], use the following:

I Plot[f[x], {x,-2,3}]

-2 -1 1 2 3

2

4

6

8

The first argument for Plot is the function f(x) to be plotted. If you prefer, you can
enter the expression for f directly as the first argument, without the need to separately
define is as a named function. However, you’ll almost always find it more convenient to
define the function on its own, if only to keep the syntax a little cleaner.

The second argument for Plot is formed as a list, consisting of items separated by commas
and enclosed in curly braces { and }. The first item of the list is the name of the independent
variable name of the function or expression. The second and third items are the left- and
right-endpoints of the interval, respectively, over which the graph is to be drawn.

Mathematica can plot many types of functions, and generally render them intelligently
– even when the functions are discontinuous or behave wildly, such as in the case of the
following expression that has infinite or non-existent limits at −π/2, 1 and π/2 in the interval
[−π, π]:

I Plot[Tan[x]/(1-x), {x,-Pi,Pi}]

-3 -2 -1 1 2 3

-4

-2

2

4

The vertical lines are, of course, to be interpreted as asymptotes; they do not represent
values of the tangent function.
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Should Mathematica not draw a suitable graph for you at any time, you have the ability
to specify a number of options following the interval specification to adjust the display. We
now consider a few such adjustments.

3.1.1 PlotRange

The PlotRange option allows you to manually adjust the vertical range that appears in
a graph produced by Plot.

For example, when plotting the graph of f(x) = e−x on 0 ≤ x ≤ 2, we have

I Plot[Exp[-x], {x,0,2}]

0.5 1.0 1.5 2.0

0.4

0.6

0.8

1.0

If you’re not watching, you’d think that this exponential graph cuts through the x-axis
somewhere around x = 1.6, and that certainly is not the case! The problem is that the
y-range shown does not include 0. We correct for this by explicitly setting the y-range of
the graph to be 0 ≤ y ≤ 1 by adding the PlotRange option:

I Plot[Exp[-x], {x,0,2}, PlotRange→{0,1}]

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Notice that we’ve extended the syntax with a comma after the interval specification, then
the option PlotRange is followed by an “arrow,” made by typing the minus sign (-) and
the greater-than sign (>) in sequence. (The two characters you type to produce the arrow
will be nicely converted into the single arrow character by Mathematica.) Next comes a list
of the y-values 0 and 1, separated by a comma and enclosed in curly braces { and }.

In the example above, we specified the PlotRange because Mathematica’s graph did
not include enough of the y-range. There may be times when you’ll want to specify the
PlotRange should Mathematica show too much of the y-range.

For example, consider trying to locate the zeroes of the polynomial p(x) = 3x3 + 11x2 −
50x− 167

I Clear[p]

p[x ] := 3 x^3 + 11 x^2 - 50 x - 167

Plot[p[x], {x,-10,10}]
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We suspect that this polynomial has three zeroes, but because of the large range of y-
values shown, we don’t have enough detail to see what’s happening near x = −5. Thus,
we’ll trim down the y-range.

I Plot[p[x], {x,-10,10}, PlotRange→{-100,100}]

-10 -5 5 10

-100

-50

50

100

Now we can see that there really are three zeroes, near −5, −3, and 4. With a little more
work, further restricting the x- and y-ranges as needed, we can get better approximations
for each of the three zeroes just from the graph. This is often called zooming in on the
graph.

For example, if you want more information about the zero between x = −5 and x = −4,
you could try

I Plot[p[x], {x,-5,-4}, PlotRange→{-1,1}]

-4.8 -4.6 -4.4 -4.2 -4.0

-1.0

-0.5

0.5

1.0

There’s enough visual evidence in the graph above to guess the zero to be x ≈ −4.69.

3.1.2 AspectRatio

You’ll notice that all of the graphics so far have the same heights and widths, with the
height being about 62% of the width. This is Mathematica’s default aspect ratio – the ratio
of a graphic’s height to its width.

This ratio comes to us from the early days of mathematics. It is the value
√

5−1
2 ≈

0.618034, thought by the Greeks to be the most aesthetically-pleasing ratio of height to
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width. Numerically, the Mathematica constant GoldenRatio is the value
√

5+1
2 , and the

default aspect ratio for Mathematica graphic output is its reciprocal 1/GoldenRatio, or

1

(
√

5 + 1)/2
=

√
5− 1

2
.

You can manually control the aspect ratio of a graph produced by Plot by adding the As-
pectRatio option. This is especially important whenever you want to see true proportions
in a graph.

For example, the portion of the unit circle x2 + y2 = 1 that lies in the first quadrant can
be seen with

I Plot[Sqrt[1-x^2], {x,0,1}]
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Clearly, this does not look anything like a portion of a circle, due to its presentation with
the default aspect ratio. To correct for this, either of the following inputs can be used

I Plot[Sqrt[1-x^2], {x,0,1}, AspectRatio→1]

(* or *)

Plot[Sqrt[1-x^2], {x,0,1}, AspectRatio→Automatic]

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

The first input forces the ratio of the graphic’s height to width to be 1, which is correct
for this specific graphic. How is the value of 1 determined? The x and y-intervals shown
are both 0 ≤ x ≤ 1, each of which has length one, and therefore have a ratio of 1 (y-length
to x-length).

The second input, using the setting AspectRatio→Automatic, lets Mathematica make
the computation of the aspect ratio for you so that units in the x-direction are just as long
as units in the y-direction7. Setting AspectRatio→Automatic is always preferred when
you want circles to appear as circles and right angles to appear as right angles.

7There’s also one subtlety taken care of by using AspectRatio→Automatic. Any additional space in
the graphic taken up by labels or other graphic elements that you might add is properly accounted for.
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On the other hand, setting AspectRatio→Automatic will produce a poor result when
the x- and y-ranges do not have comparable lengths. For the graphic below, the length of
the y-range is less than 0.4% the length of the x-range.

I Plot[Sqrt[x]/10, {x,0,1000},
AspectRatio→Automatic]

0 200 400 600 800 1000

3.1.3 PlotStyle

You should think that Mathematica sketches graphs with some sort of “pen in hand.”
Pens can have different drawing characteristics such as the color of the ink used, thickness
of the point, or even (especially in the case of worn pens) how solid an image might be
produced. Such characteristics of the pen “strokes” used to draw the graph of a function or
expression may be adjusted by specifying a value or collection of values for the PlotStyle
option.

3.1.3.1 Thickness

You might wish to have the graph stand out more from the axes by drawing it with a
thicker pen. The most convenient way to do this is with

I Plot[x^2, {x,-2,3}, PlotStyle→Thick]
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Mathematica supplies the predefined constants Thick (as used above, with the graph
appearing thicker than the axes) and Thin (which would make the graph thinner than the
axes) for convenience. You’ll probably use one or the other in most instances.

More generally, you can control the thickness of a curve very precisely using the Abso-
luteThickness directive. Its argument defines the width of the curve in terms of printer’s
points, with 1 point being approximately 1

72 of an inch. So, for example, to have the graph
drawn with a 5 point width, use

I Plot[x^2, {x,-2,3},
PlotStyle→AbsoluteThickness[5]]
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The following table shows how Thick and Thin compare with the default in terms of
AbsoluteThickness.

Abbreviation Specification

Thin AbsoluteThickness[0.25]
(Default) AbsoluteThickness[0.5]
Thick AbsoluteThickness[2]

3.1.3.2 Color and Gray Scale

A second, useful alteration of the way in which a curve is drawn is to use either color or
shades of gray (in case you’re working with a black and white printer). In fact, if you’ve
been watching, Mathematica has already been drawing curves in blue for you (although the
graphs in this text have been altered for black and white printing).

For example, to have the graph of y = x2 above sketched in gray, you supply a GrayLevel
directive for PlotStyle.

I Plot[x^2, {x,-2,3}, PlotStyle→GrayLevel[0.5]]
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The argument of GrayLevel should be a number between 0 and 1. A GrayLevel of
0.0 plots the curve in black. Values larger than zero use less black and more white. A
GrayLevel of 1.0 plots the curve in white. The 0.5 value used above draws the curve in a
50% gray level.

Some useful abbreviations that you can use (instead of specifying the gray level directly)
are shown in the table below.

Abbreviation Specification

LightGray GrayLevel[0.85]
Lighter[Gray] GrayLevel[2/3]

Gray GrayLevel[0.50]
Darker[Gray] GrayLevel[1/3]

As for colors, they’re also pretty easy to handle. Mathematica has already predefined
several commonly used colors such as Blue, Red, Yellow, and Green. So we could instead
use the following to have a curve drawn in red in its default thickness (although the graph
will not be shown here).

I Plot[x^2, {x,-2,3}, PlotStyle→Red]

The complete list of named colors and some of their variations can be found in the online
Documentation Center by searching for Colors.

Finally, you can choose any color of the rainbow by using the RGBColor directive. This
allows you to specify the exact levels of red, green, and blue to be used in creating the color.
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For example, the color yellow is obtained by mixing red and green without blue, thus
RGBColor[1,1,0] generates a bright yellow. Brown is obtained by mixing red, green, and
blue in the combination of 60% red, 40% green, and 20% blue, thus RGBColor[0.6,0.4,0.2]
generates brown.

A fourth argument for RGBColor allows you to specify the opacity of the color, the
degree to which the color is transparent (and thus the degree to which portions of a graphic
behind the color are visible.) We’ll not say anything further on opacity, except to say that
you should check the online examples, starting with ?RGBColor.

3.1.3.3 Dashed and Dotted Curves

Curves can be drawn using a dashed line, rather than solid line – as if the pen you’re
drawing with might be running out of ink. For example, to have the graph sketched with a
simple dashing, you can use the Dashed value for PlotStyle.

I Plot[x^2, {x,-2,3}, PlotStyle→Dashed]
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The Dashed value is a convenient abbreviation that’s sufficient for most situations. More
generally you can control dashing more precisely with one of Dashing or AbsoluteDash-
ing. For example, to draw the dashes 15 points in length, but leave 3 points of space
between successive dashes, you’d use

I Plot[x^2, {x,-2,3},
PlotStyle→AbsoluteDashing[{15,3}]]
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The companion Dashing directive follows a similar syntax, but its measurements are
specified as percentages of horizontal width rather than absolute widths. Dashed is an
abbreviation (approximately) for Dashing[{0.025,0.025}].

Finally, Dotted can be specified as a value for PlotStyle. It equates (approximately)
to Dashing[{0,0.025}] and produces exactly what you’d expect for output (however, we’ll
not demonstrate that here).
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3.1.4 Multiple Options, Multiple Styles

It is possible to specify multiple options for the Plot command, as well as multiple pen
characteristics for the PlotStyle option itself for a single curve, as the following example
shows.

I Plot[Exp[-x], {x, 0, 2},
PlotRange → {0, 1},
AspectRatio → Automatic,

PlotStyle → {Black, Dashed, Thick}]
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Here, you see that

(a) The options PlotRange, AspectRatio, and PlotStyle simply are appended after
the interval specification and separated by commas (they can appear in any order);

(b) We’ve formatted the input so that each of the options for Plot appears on a new
line to make the input easier to read;

(c) The three items for the PlotStyle option have been formed into a list, separated by
commas and enclosed by curly braces { and } (the order of the items within this list
is not important).

As input now becomes more complicated, you’ll find it a good strategy to separate options
out one to a line, as we did above. The input is easier to read and, more importantly, easier
to edit.

One additional modification we’d recommend for the input above is to separate out the
styles under a separate name as follows (the output is the same as what’s above, of course)

I styles = {Black, Dashed, Thick};
Plot[Exp[-x], {x, 0, 2},
PlotRange → {0, 1},
AspectRatio → Automatic,

PlotStyle → styles]

3.1.5 Other Plot Options

PlotRange, AspectRatio, and PlotStyle are just three of almost 60 different options
allowed with the Plot operator (as of version 7 of Mathematica). The following table
includes a few other easy-to-use (and understand) options you may want to know about.
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Option Sample Usage

Axes Axes→False

AxesLabel AxesLabel→{¨x¨,¨y¨}
AxesOrigin AxesOrigin→{0,0}

Filling Filling→Axis

Frame Frame→True

GridLines GridLines→Automatic

PlotLabel PlotLabel→¨The Graph of the Sine Function¨

Ticks Ticks→None

3.2 Getting Help for Plot (and other commands)

Since the basic Plot command is used so often and has so many possible options, you
should know that there are three primary ways in which you can get some help in putting
together exactly the right Plot command. You’ll also find that many of these methods
extend to other command areas in Mathematica.

3.2.1 The ? Command

For any Mathematica command for which you know its name, use the question mark
operator to ask for information about the operator.

For example, to get help for the Plot operator, the following sequence is how you start:

I ?Plot

In addition to a short summary of the operator’s format and arguments, you can click on
the >> link at the end of the summary to open up a help page on the Plot operator (not
shown).

Of note is that the help page not only has basic information, but also

• You can copy and paste any of the examples shown on the Help page to your notebook
– and, in fact, you don’t even have to do a copy and paste, since you can execute any
example shown right on the help page.
• Each help page is broken into a number of sections that can be shown or hidden. Open-

ing up the Details and Options area of the page will show more specific information

about the many options available for use with the operator.

• Opening up the See Also section of a help page will provide links to related commands,
often giving you clues in case you’re looking for a more appropriate command to use
for a particular situation instead of, say, Plot.

• Opening up the Tutorials sections will lead to very useful tutorial information.

ý You can get help using the question mark (“?”) on any command.

But what happens if you don’t remember (or haven’t yet heard of) the name of a command?
The answer is pretty easy, because the ? command allows the use of the asterisk as a wild-
card character to represent any string of zero or more characters.
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For example, suppose you need some help factoring an expression (we’ll learn about this
operation in the next Chapter), and you’re guessing that Mathematica probably knows
about factoring. Remembering that names in Mathematica begin with a capital letter, use

I ?Factor*

and Mathematica will return a list of commands that begin with the word Factor, whereas

I ?*Factor*

will return a list of commands that have the word Factor anywhere in their name.

3.2.2 The Basic Commands Palette

We’ve already mentioned the use of a palette. Mathematica contains palettes for many
different areas, including one specifically to help you in forming proper Plot syntax. Open
up the Basic Commands palette and click the 2D button.

When you click on the Plot button, a template for the Plot operator is added to your
notebook:
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The “function” area of the template is highlighted, so just start typing the function or
expression. Hit the Tab key to move to the next placeholder in the template for the variable,
and so on.

By clicking on buttons such as Range, Style, Ticks, and so forth in the Basic Commands
palette, additional option templates will be added to the Plot command you’re building.
(We’ll not show that here; this is best seen interactively.)

3.2.3 The = Operator

Version 8 of Mathematica introduced the capability to enter commands in a less-structured,
natural language format. As long as you are connected to the internet and begin an input
cell with the = sign, you can type commands almost in English and Mathematica will return
what best fits your language.

For example, if you wanted to begin working with a plot the sine function, you begin an
input cell with the = operator and then just type anything that’s reasonably close to being
interpreted as a plot request, such as

Mathematica will respond with the syntax for a basic Plot command for the sine function,
having chosen a suitable interval to get you started (in this case, one that’s slightly longer
than [−2π, 2π]).

Clicking on the + button above will reveal more information and possible alternatives –
that will not be demonstrated here.

Once again, use of the = operator can be used at any time, in any context, and you don’t
have to be very precise in your choice of language or syntax to get started. This is, perhaps,
the most powerful feature added in Version 8 of Mathematica.
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3.3 Graphing Several Functions

We often place several curves on the same graph and Mathematica supports this easily.
Sometimes, the graphs are drawn over the same interval, so only one Plot is needed. In
other situations, the graphs are drawn using completely different x- and y-ranges using
separate Plots and then are combined using the Show operator.

3.3.1 Multiple Functions in the Same Plot

The first argument of the Plot operator can be either a single function (or expression),
as we’ve seen already, or a list of functions (and/or expressions). The individual functions
and expressions are enclosed in curly braces { and } and separated by commas. The use of
a list allows us to graph more than one function or expression over the same interval.

For example, to see the sine and cosine curves on the same set of axes, we use:

I Plot[ {Sin[x],Cos[x]}, {x,-Pi,Pi}]
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Options that affect the graphic as a whole can be specified just as before. To add a title
to the graphic and place a frame around it, we would use

I Plot[ {Sin[x],Cos[x]}, {x,-Pi,Pi}, Frame→True,

PlotLabel→¨Graphs of sine and cosine¨]
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Graphs of sine and cosine

However, specifying values for the PlotStyle option becomes more involved, since Mathe-
matica extends the syntax of PlotStyle to allow different style characteristics to be applied
to each curve separately. (There are some other options where this is also the case, although
we’ll only demonstrate the technique for PlotStyle.)

As a first demonstration, we’ll draw the sine curve with a thicker pen and the cosine curve
dashed.

I Plot[ {Sin[x],Cos[x]}, {x,-Pi,Pi},
PlotStyle→{Thick, Dashed}]
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Notice what’s happened. When we drew a single curve earlier, both the Thick and
Dashed directives would have been applied to the curve. Here, two curves are drawn, with
Thick applied to the first curve and Dashed applied to the second curve.

So the meaning of the value for PlotStyle has changed. A list of two elements is specified
(since there are two curves), separated by a comma and enclosed in curly braces { and }.
The first element of the list is associated with the first curve, and the second element of the
list is associated with the second curve.

But then how do we specify more than one directive for either one of the curves? The
answer: collect those directives into a list. Here’s how the curves would be drawn with the
sine thick and red, and the cosine dashed in green (although the output will not be shown).

I Plot[{Sin[x], Cos[x]}, {x, -Pi, Pi},
PlotStyle -> {{Thick,Red}, {Dashed,Green}}]

Be sure you recognize the structure of the specification of the PlotStyle. It is a list of
two items, each of which is itself a list. Make sense?

With the complexity that you now see involved in writing a single Plot input, we offer
the following technique, one that we suggested earlier. If the PlotStyle specification starts
to become unwieldy, define the styles separately as follows.

I style1 = {Thick,Red};
style2 = {Dashed,Green};
Plot[{Sin[x], Cos[x]}, {x, -Pi, Pi},
PlotStyle -> {style1, style2}]

3.3.2 Combining Multiple Plots

Graphics produced in Mathematica can be assigned to variables, just as values and ex-
pressions can be assigned. Using the Show operator, those graphics can later be combined
into a single graphic.

For example, the graphs of sine and cosine produced above could be constructed separately
and assigned to variables and then merged into a single graphic using Show, as in the
following sequence.

I graph1 = Plot[Sin[x], {x, -Pi, Pi},
PlotStyle→{Thick,Red}];

graph2 = Plot[Cos[x], {x, -Pi, Pi},
PlotStyle→{Dashed,Green}];

Show[graph1,graph2]

The sequence above is a blueprint for how to construct complicated graphics: draw them
in sections and combine them with Show.

However, when graphics have associated options that might possibly conflict when the
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graphics are combined, Show uses the options specified for the first of its arguments as the
primary control of its output.

You can see an example of this behavior in the following sequence, where the sine and
cosine graphs are sketched over different intervals.

I graph1 = Plot[Sin[x],{x,0,2Pi}];
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I graph2 = Plot[2Cos[x],{x,-Pi,Pi}];
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I Show[graph1,graph2]
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The problem above is that graph1 had an associated PlotRange of 0 ≤ x ≤ 2π and
−1 ≤ y ≤ 1. This was used as the PlotRange for the combined graphic produced by
Show.

We can correct for this by explicitly specifying the PlotRange to be used by Show.

I Show[graph1,graph2, PlotRange→{{-Pi,2Pi},{-2,2}}]
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Once again, you see syntax complexity creeping into the discussion. Here, the PlotRange
has been specified using a list of two items, one for the x-range, and one for the y-range.
Each of these is itself a list of {-Pi,2Pi} and {-2,2}, respectively.

As a convenience, Mathematica lets you specify the value Automatic for a PlotRange.
Doing so with Show forces Mathematica to enlarge the range in each direction to include
the ranges of each individual graphic.

Finally, other options you’d use with Plot can be included with Show directly, either to
enhance the output, or to override options associated with the individual plots.

For example, if the last graph above was acceptable, but an appropriate label for the
graphic was not generated for either of the component graphics, it can now be added by
specifying a PlotLabel option with Show.

I Show[graph1,graph2, PlotRange→{{-Pi,2Pi},{-2,2}},
PlotLabel→"Graphs of sine and cosine"]
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3.4 Exercises

1. Two options sometimes used with Plot are Ticks and GridLines. Find out about these
two options and their default values using the information operator ?, and experiment
with their effect on Plot by producing a few simple plots.

2. Consider plotting the following sixth-degree polynomial p over the interval −5 ≤ x ≤ 10.

p(x) = 106.04− 298.75x+ 347.83x2 − 214.16x3 + 73.52x4 − 13.34x5 + x6

True or False: for 0 ≤ x ≤ 4, p(x) = 0. What explanation can you give for your
observation?

3. Plot the graph of the function below over the interval [−3, 4] using the Piecewise
operator.

f(x) =


x4 + x+ 1, x ≤ −1

2x+ e, −1 < x < 2

cos πx2 + 5x, 2 ≤ x
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Are there any unexpected features in the graph?

4. By properly restricting the PlotRange and the interval over which Plot is used, esti-
mate all zeroes of the following function over the interval −π ≤ x ≤ π.

f(x) =
π

10
+ sinx+ sin(3x) + sin(4x)

Be sure to check your answers numerically – i.e., is f(x) ≈ 0 for each value x you find?

5. By properly restricting the PlotRange and the interval over which Plot is used, esti-
mate all zeroes of f(x) = sin(2x)ecos(3x) − 0.1 in [0, 8]. Be sure to check your answers
numerically – i.e., is f(x) ≈ 0 for each value x you find?

6. By properly restricting the PlotRange and the interval over which Plot is used, es-
timate the maximum and minimum values of each of the following functions, on the
indicated interval, to about three decimal places:

(a) f(x) =
(x5 − 4) sinx2

1 + x4
, on the interval [0, 2].

(b) f(x) =
π

10
+ sinx+ sin(3x) + sin(4x) on [−π, π].

(c) f(x) = sin(2x)ecos(3x) − 0.1 on [0, 8].

7. Use the Plot operator to help determine whether each of the following statements is
true. Explain why you think your answer is correct.

(a) r(x) =
x− 5

x2 + 2x
is increasing for x > 0.

(b) f(x) = 64x4 − 16x3 + x2 is increasing on [0, 5].

8. Define the function f(x) = x2 − 3x+ 2. Plot the graphs of f(x), f(x− 1) and f(x− 2)
over the interval [−1, 7] on the same set of axes, using different shading and dashing for
each of the graphs. What can be concluded about the relationship of the graph of f(x)
and f(x− a), for any value of a?

9. Define the function f(x) = 2x2 − 4x − 5. Plot the graphs of f(x) and |f(x)| over the
interval [−4, 4] on the same set of axes, using different shading and dashing for each of
the graphs. What can be concluded about the relationship of the graph of f(x) and
|f(x)| in general?

10. Define the function f(x) = x3− 2x. Plot the graphs of f(x), f(x) + 2 and f(x) + 4 over
the interval [−4, 4] on the same set of axes, using different shading and dashing for each
of the graphs. What can be concluded about the relationship of the graph of f(x) and
f(x) + a in general, for any value of a?

11. Define the function f(x) = sinx. Plot the graphs of f(x), f(2x) and f(3x) over the
interval [−π, π] on the same set of axes, using different shading and dashing for each of
the graphs. What can be concluded about the relationship of the graph of sin(x) and
sin(ax) in general, for any value of a?

12. Define the function f(x) = lnx. Plot the graphs of f(x), f(2x) and f(3x) over the
interval [1, 10] on the same set of axes, using different shading and dashing for each of
the graphs. What can be concluded about the relationship of the graph of ln(x) and
ln(ax) in general, for any value of a?

13. Sketch the graphs of y = sinh(x), y = cosh(x) and y = 1
2e
x on the same set of axes, over

the interval [−4, 4], using different shading and dashing. Which curves are above which
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other curves? Are any of the curves asymptotic to any others? If so, explain why. (You
may have to refresh your memory about the definition of y = sinh(x) and y = cosh(x).)

14. Graph the rational function r(x) =
x3 − x2

5x+ x2 − 2x3
with a solid pen, together with

the line y = −1/2 over the interval [−10, 10], using dashing. Is there an asymptotic
relationship between the curves?

15. The improper rational function r(x) =
x3 − x2

x2 + x− 7
may be written r(x) = x − 2 +

9x− 14

x2 + x− 7
, after division of the polynomials is carried out. Hence, the line y = x − 2

is an oblique asymptote of the graph of the function r. Graph r and this line over the
interval [−10, 10], using dashing for the line, to demonstrate the asymptotic relationship.

16. Graph the functions

y = lnx and y = 1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
+

x6

720

on the same set of axes over the interval [1, 7], using different shading and dashing. Is
there any symmetry in the graphs with respect to the axes? Do the graphs have any
symmetry with the line y = x?

17. Graph (both of) the composition(s) of the functions given in the previous problem, over
the interval [1, 7]. What do you observe?

18. Use a graph to estimate the smallest positive root of the equation tan(x) = x. (A value
x0 is a root of this equation if the curves y = tan(x) and y = x intersect at x0.) Be
sure to check the result you find numerically.

19. Use a graph to estimate a root of cosh(x)− x = 1 + cos(x). Be sure to check the result
you find numerically.

20. Use a graph to estimate all solutions to the equation x3 − x = sin(x) − 1. Be sure to
check your proposed solutions by evaluating the equation at each potential solution.

21. Use a graph to estimate all solutions to the equation x = 4 sin(x) + 1. Be sure to check
your results by evaluating the equation at each potential solution.

22. Use a graph to estimate all solutions to the equation x = 4 tan−1(x). Be sure to check
your results by evaluating the equation at each potential solution.

23. Use a graph to estimate all intersections of the graphs of the functions f(x) = x
3 and

g(x) = ln(x4 + 1
3 ). Be sure to check your proposed solutions by evaluating the equation

at each intersection you find.

24. Use a graph to estimate all intersections of the graphs of the functions f(x) = sin(3x)

and g(x) = x2

22 . Be sure to check your proposed solutions by evaluating the equation at
each intersection you find.

25. Use a graph to estimate the solution to the inequality

∣∣∣∣ 2x− 5

x7 − 5x3 − 2

∣∣∣∣ ≤ 1 by plotting

the functions f(x) =
2x− 5

x7 − 5x3 − 2
, g(x) = −1 and h(x) = 1 on the same set of axes

and zooming for intersections.
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4 Graphs of Equations and Parametric Curves

Not every graph we draw is that of a function. In the most general case, we’ll be handed a
simple equation in two variables (say, x and y) and asked to plot its graph (i.e., the collection
of all points having coordinates (x, y) where x and y satisfy the equation).

In more interesting cases, the curve might be parameterized in a form (x(t), y(t)) for a
parameter t in some interval, or even be given in polar coordinates where x(t) = r(t) cos θ
and y(t) = r(t) sin θ, for θ restricted to some interval.

The following sections address each of these cases.

4.1 Graphs of Arbitrary Equations

Not every equation involving variables x and y can be written in the simple form y = f(x),
for some function f , and thus we cannot use the Plot operator to graph it. Thus we will
rely on the higher level ContourPlot operator to handle the task of graphing arbitrary
equations.8

4.1.1 ContourPlot and One Equation

The ContourPlot operator is used to graph an equation (or equations) involving two
variables (say, x and y) that lies within a given rectangle (say, a ≤ x ≤ b and c ≤ y ≤ d).

For example, to see the ellipse 2x2 + 7y2 = 23, we will use

I ContourPlot[2x^2+7y^2==23, {x,-4,4}, {y,-2,2}]
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The syntax for this use of ContourPlot has three arguments: an equation involving two
variables, and the specifications of suitable intervals for each of the variables over which the
equation is to be considered.

The first of these above is easy to understand: it’s just the equation of interest. However,
you have to use the double equal sign == to enter the equation. (A common mistake is to
use a single equal sign, so watch carefully for this.)

The second and third arguments are the interval specifications for −4 ≤ x ≤ 4 and
−2 ≤ y ≤ 2, in the usual form. How did we know that these were appropriate choices?
Apart from some combination perhaps of guessing and experience, we can see that the
variables must satisfy the inequalities x2 ≤ 23/2 = 11.5 and y2 ≤ 23/7 ≈ 3.3 and then we
rounded up a little after taking square roots.

As you probably should guess from the graphic, ContourPlot sets AspectRatio→1 for
its output by default. Indeed, the ellipse 2x2 + 7y2 = 23 should have its longer axis parallel

8Be aware, though, that ContourPlot is a more general tool for working with level curves of two-variable
functions, and what we show here demonstrates only a portion of the full capability of ContourPlot.
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to the x-axis and its shorter axis parallel to the y-axis. To get a truer representation for
this graph, we’d want to set the AspectRatio ourself.

I ContourPlot[2x^2+7y^2==23, {x,-4,4}, {y,-2,2},
AspectRatio→Automatic]
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You’ll also notice that the graphic produce above is framed and no axes have been drawn.
If you’d prefer to see the picture with a more common presentation of the axes, you can use
the following to turn off the frame and to turn on the axes.

I ContourPlot[2x^2+5y^2==23, {x,-4,4}, {y,-2,2},
AspectRatio→Automatic,

Frame→False, Axes→True]
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There’s a cute feature associated with ContourPlot that’s worth mentioning here. For
the graphic above (and the two that preceded it), you’ll see a tooltip on the mouse as you
move over the curve showing the equation of the curve. Neat!

4.1.1.1 Controlling the Style

Some options you can specify for Plot can be used with ContourPlot. However, there
is one important difference: the drawing characteristics of a curve are now controlled using
the ContourStyle option. So to add some style to the graph above, you’d use

I ContourPlot[2x^2+5y^2==23, {x,-4,4}, {y,-2,2},
AspectRatio→Automatic,

Frame→False, Axes→True,

ContourStyle→{Magenta,Thick,Dashed}]
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Notice that the actual list of styles you supply follows the same syntax you learned earlier
for PlotStyle with the Plot command.

4.1.1.2 Multiple Equations

ContourPlot may be used to plot the graph of more than one equation at the same
time (inside a common rectangle). For example, the curves x2 + 8xy + 9y2 = 10 and
x2 − 4xy + 7y2 = 10 define a hyperbola and ellipse, respectively, and can be seen with

I ContourPlot[{x^2+8x*y+9y^2==10,x^2-4x*y+7y^2==10},
{x,-5,5},{y,-5,5},
ContourStyle→ {{Thick}, {Gray, Dashed}}]
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You once again see list syntax used to define the two equations above for ContourPlot.
They must be separated by a comma and enclosed in curly braces { and } to form the first
argument of ContourPlot.

The usual range of options for ContourPlot can be specified when more than one curve
is drawn, although as you see above, the specification for ContourStyle requires the usual
syntactic attention to detail, since it is a list of two items, each of which is itself a list.

4.1.1.3 ContourPlot Issues

ContourPlot is a fairly robust command, so there are rarely technical issues that arise
when you use it as we’ve described here. However, you do need to think ahead and be
careful when using ContourPlot for two reasons:

• the equation you’re attempting to plot may not have any solutions (e.g., x2 +y2 = −1);
or more generally,
• the equation you’re attempting to plot does not have any solutions within the enclosing

rectangle you’re specifying (e.g., (x − 3)2 + y2 = 1 has no solutions if you restrict
−1 ≤ x ≤ 1).

Attempting to do either of the above does not generate an error message. Rather, all
you’ll see is an empty graphic for the rectangle you specified.

I ContourPlot[(x-3)^2+y^2==1, {x,-1,1}, {y,-1,1}]
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Beware the dreaded empty graphic! It is likely not an error of ContourPlot, but rather
an error on your part either in specifying the equation correctly and restricting the plot to
a section of the plane in which the equation actually has solutions.

4.2 Parametric Plots

A curve is said to be defined parametrically if it has the form {(x(t), y(t)) : a ≤ t ≤ b},
where x and y are functions of a variable t, and a and b are constants. Mathematica supports
working with such curves.

4.2.1 Plotting One Parametric Curve

A standard example of a curve that is defined parametrically is the unit circle, which can
be described as the set of points

{(cos t, sin t) : 0 ≤ t ≤ 2π}

You can see its graph with the following input.

I ParametricPlot[{Cos[t],Sin[t]}, {t,0,2Pi}]
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Notice that the first argument for ParametricPlot contains the parametric expressions
for the x- and y-coordinates separated by a comma and enclosed in curly braces { and
}. The second argument that names the independent variable and the range over which it
varies has a familiar form, just as we’ve seen previously with the Plot operator.

A more interesting parametric curve is the cycloid, which is formed as the path through
which a fixed point on a circle travels as the circle is “rolled” along the x-axis. Parametrically,
it is usually described by the equations

x(t) = t+ sin t and y(t) = 1 + cos t

with the selection of the range of the parameter t determining which section of the curve is
being investigated. Using this description directly over the interval 0 ≤ t ≤ 6π, Mathematica
produces

I ParametricPlot[{t+Sin[t],1+Cos[t]}, {t,0,6Pi}]
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4.2.1.1 The AspectRatio Option

By default, the ParametricPlot operator produces a graphic with its AspectRatio set
to Automatic. Thus we really do see a circle above in the first graphic and we see axes for
the cycloid drawn with equal length units.

However, be forewarned that AspectRatio→Automatic may not always be the best
choice and that you may have to control the aspect ratio directly. For example, the
parametric curve x(t) = t and y(t) = t3, for 0 ≤ t ≤ 5 will not display well with
AspectRatio→Automatic because the x-coordinates vary from 0 to 5, while the y-
coordinates vary from 0 to 125.

I ParametricPlot[{t,t^3}, {t,0,5}]
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Reexecuting this with either of AspectRatio→1 or AspectRatio→1/GoldenRatio
will quickly get the graphic above under control.

I ParametricPlot[{t,t^3}, {t,0,5},
AspectRatio→Automatic]
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4.2.1.2 Other ParametricPlot Options

Most options that can be specified with Plot can be used with ParametricPlot as well.
For example, for the cycloid drawn above, it is easy to add a label, specify which tick marks
to place on the axes, and make the graph appear think and in green.

I ParametricPlot[{t+Sin[t],1+Cos[t]}, {t,0,6Pi},
PlotLabel→¨A Cycloid¨,

PlotStyle→{Green,Thick},
Ticks→{{0,2Pi,4Pi,6Pi}, {0,1,2}}]
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A complete list of the more than 50 options that can be used with ParametricPlot is
available in the online help. They can also be seen quickly with

I Options[ParametricPlot]

4.2.1.3 Multiple Curves in One ParametricPlot

You can easily plot more than one parametric curve using a single ParametricPlot,
just as you can plot more than one function using Plot. The only requirement is that the
parametric interval be the same.

Consider sketching two cycloids at the same time, with the second “out of phase” from
the first by π. That is, consider sketching the two cycloids:{

x1(t) = t+ sin t

y1(t) = 1 + cos t
and

{
x2(t) = t+ sin(t+ π)

y2(t) = 1 + cos(t+ π)

The effect is much the same as rolling one ball along the x-axis, tracking the points that are
initially at the “top” and the “bottom” of the ball.

The following illustrates the motion of the two points, with the point at the top rep-
resented by the gray track and the point at the bottom represented by the red, dashed
track.

I x1[t ]:=t+Sin[t]

y1[t ]:=1+Cos[t]

x2[t ]:=t+Sin[t+Pi]

y2[t ]:=1+Cos[t+Pi]

ParametricPlot[{{x1[t],y1[t]},{x2[t],y2[t]}},
{t,0,4Pi},
PlotStyle→{{Gray},{Red,Dashed}}]
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Notice first that we gave separate definitions to the parametric functions x1, y1, x2, and
y2 that define each of the curves above. This keeps the syntax manageable and shows more
clearly the syntax of the first argument for ParametricPlot.

Once again, we see list syntax being used throughout the input. The first argument is a
list of two items, separated by a comma and enclosed in curly braces { and }. Each of these
items defines a curve and is itself a list of two parametric functions separated by a comma
and enclosed in curly braces { and }.

The syntax of the values supplied to the PlotStyle option is the same as what we saw
earlier for multiple curves in a single Plot. Here, since two parametric curves are plotted,
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the value for PlotStyle is a list of two items, separated by a comma and enclosed in curly
braces { and }. Each of the items is itself a list of style directives separately associated with
the curves (only one item appears in the first list, while two items appear in the second).

4.3 Polar Plots

A special class of curves that can be defined parametrically are those given in polar
coordinates (r, θ), where |r| represents the distance of a point P from the origin, and θ the
angle formed by the x-axis and the line segment from the origin to P (as long as r 6= 0).

Usually, such curves appear in the form r = f(θ), over a given range of the variable θ.
Points on such curves all appear in the form {(r cos θ, r sin θ) : θ1 ≤ θ ≤ θ2}, and so these
curves may be graphed using the ParametricPlot operator.

For example, the graph of a simple cardioid r = 1 + cos θ is easily defined and plotted.
(Here, we make use of the Typesetting palette to enter a Greek θ as the variable and a
Greek π for the Mathematica constant Pi)

I Clear[f]

f[θ ] := 1+Cos[θ]
ParametricPlot[{f[θ]Cos[θ],f[θ]Sin[θ]}, {θ,0,2π}]
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In fact, because such a curve is so common, Mathematica supplies the PolarPlot operator
as a convenient way to use with the ParamtericPlot operator, without the need to write
the curve explicitly in the form {f[θ]Cos[θ],f[θ]Sin[θ]}.

Indeed, consider plotting the three-leaf rose given by the equation f(θ) = 2 cos(3θ).

I Clear[f]

f[θ ] := 2*Cos[3*θ]
PolarPlot[f[θ],{θ,0,2π}]

-1.0-0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Note that AspectRatio→Automatic is the default for the PolarPlot operator (as
was the case for ParametricPlot). It may be necessary to explicitly specify, say, one of
AspectRatio→1 or AspectRatio→1/GoldenRatio to better present an unruly plot.
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The PolarPlot operator is also capable of plotting multiple curves in the form r = f(θ)
on the same set of axes, such as the three-leaf rose r = 2 sin(3θ) and the circle r = 1.

I PolarPlot[{2Sin[3θ],1},{θ,0,2π}]
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Additionally, the full range of PlotStyle options may be specified with PolarPlot, as is
the case with the following two cardioids, one of which is simply a rotation of the other:

I Clear[f,g]

f[θ ]:=1+Cos[θ]
g[θ ]:=1-Sin[θ]
PolarPlot[{f[θ],g[θ]},{θ,0,2π},

PlotStyle→{{Red}, {Thick, Dotted, Green}}]
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It appears the curves intersect in three points. Two of the angles at which the intersections
occur are somewhat obvious from the diagram, namely at θ = −π/4 and θ = 3π/4. This
can be verified easily (recall that the Mathematica test of equality is the double equal sign
==)

I f[3π/4]==g[3π/4]

B True

I f[-π/4]==g[-π/4]

B True

The origin (pole) is also a point of intersection of the curves, but for different values of
the angle θ, as we can see with

I f[π/2]==g[0]

B True

4.4 Combining Multiple Graphics

Any combination of function graphs created with Plot, graphs of equations created with
ContourPlot, parametric plots created with ParametricPlot, and polar curves created
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with PolarPlot separately can be combined using the Show command. The method is the
same we demonstrated with Plot earlier: create the graphics separately, assign the results
(the graphics) to variables, then use Show (supplying option adjustments as needed) to
combine them in a single graphic.

In particular, you are not restricted to two graphics created by the same operator; any
two graphics can be combined.

For example, to investigate where the circle x2 + y2 = 4 intersects the cubic y = x3, we
could use the following graphic (and then zoom in, of course).

I graph1 = Plot[x^3,{x,-2,2}];
graph2 = ParametricPlot[{2Cos[t],2Sin[t]}, {t,0,2Pi}];
Show[graph1, graph2, PlotRange→{-2,2}, AspectRatio→Automatic]
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4.5 Exercises

1. Use ContourPlot to help identify the curve given by the equation x2+y2−2x+4y = −1.
Find parametric equations for this curve, and check your result with ParametricPlot.

2. Use ContourPlot to sketch the curve given by the equation x3 + y3 = 6xy (this is
often called the Folium of Descartes). Estimate as best you can the point “on the loop”
that’s farthest from the origin.

3. Consider the curve given parametrically by the equations

x(t) =
3t

t3 + 1
and y(t) =

3t2

t3 + 1

for t 6= −1. Sketch this curve. Indicate the order in which the curve is traced. Does the
curve look familiar? (Hint: the previous problem! )

4. Consider the curve given parametrically by x(t) = cot(t) and y(t) = sin(t) cos(t), for
0 < t < π. Sketch the curve. Compare the curve with the graph of the function

y =
x

1 + x2
. What can you conclude? Why?

5. Sketch the polar curves r = a + 2 sin θ, for values of a = 1
2 , 1,

3
2 , 2,

5
2 , on the same set

of axes, using different shadings or dashings to distinguish the curves. What can be
concluded about the character of the curve in terms of a?

6. Sketch the graphs of the polar equation f(θ) = sin(kθ), for a few positive, integral
values of k. What is the relationship between k and the number of leaves in the graph?

7. Sketch the graphs of the polar equations f(θ) = sin(kθ) and f(θ) = cos(kθ) on the same
set of axes, for a few positive, integral values of k. What is the relationship between
the graphs?
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8. Determine the relationship between the positive integer k and the number of leaves on
the graph of f(θ) = cos θ − cos(kθ).

9. (Conic Sections) You may remember that the graph of any equation of the form Ax2 +
Bxy+Cy2 +Dx+Ey+F = 0 is a conic section, which will be a (possibly degenerate)
circle, ellipse, or hyperbola. For such an equation, the quantity B2 − 4AC determines
the character of the graph (barring degeneracy) to be:

• a parabola if B2 − 4AC = 0;
• an ellipse if B2 − 4AC < 0; or
• a hyperbola if B2 − 4AC > 0.

You’ve probably worked algebraically with such equations in the case when B = 0.
Unfortunately, the study of the case for B 6= 0 involves a rotation of the conic section,
and this computation is often omitted standard coursework (although it appears in
almost all Calculus books).

Use the information and discussion above to first identify the graph of each of the
following equations in terms of its coefficients, and then produce its graph.

(a) x2 − 7xy + 5y2 + 2x+ 3y − 9 = 0
(b) 4x2 + 2xy + 3y2 + x− 5y − 17 = 0
(c) 2x2 + 4xy + 8y2 + 3x− y + 5 = 0
(d) 3x2 − xy − 1 = 0

10. (Conic Sections in Polar Coordinates). The graph of any polar equation in the form

r =
ed

1 + e cos(θ − θ0)
, for constants d, e > 0 and θ0, is a conic section. If 0 < e < 1,

the graph is an ellipse, if e = 1, the graph is a parabola, and for e > 1, the graph is a
hyperbola. Identify each of the following according to this result, and graph:

(a) r =
2

1− cos θ

(b) r =
10

2 + cos θ

(c) r =
3

1 + 2 cos θ

11. Estimate the number of times that the curve r = θ intersects the curve r = 9 sin(3θ).
In general, whats the character of the polar curve r = θ?

12. Estimate the number of times that the curve r =
√
θ intersects the curve r = 3 sin(2θ).

13. Sketch the curve defined by the equation x4 + x2y − y6 + 5 = 0.

14. In how many points do the ellipses

(x− 1)2

22
+
y2

12
= 1 and

(x− 2)2

12
+

(y − 2)2

22
= 1

intersect? Identify the coordinates of the intersection points as best as you can graphi-
cally.
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5 Computer Algebra

Mathematica has the capability to do most of the algebraic and symbolic manipulations with
which you’re already familiar, including factoring, recognizing identities, canceling common
factors in quotients, and solving equations. This Chapter introduces most of the commands
you’ll use to do symbolic manipulation.

5.1 Working With Expressions

In this section, we’ll see how Mathematica commands can be used to manipulate expres-
sions. We’ll discuss each of these commands according to the type of expression with which
you might be working, be it polynomial, rational, trigonometric, exponential, of logarithmic.

5.1.1 Polynomials

Polynomials of a single variable are expressions of the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where x is the independent variable in the expression, n is a nonnegative integer, and an,
an−1, . . . , a0 are constants.

Polynomials are expanded by hand with the “FOIL” method that students know, and
factored using ad-hoc techniques that require some combination of cleverness and possibly
guessing. Mathematica does each of these very well.

5.1.1.1 Expand and Factor

Consider entering the following polynomial in its factored form:

I (x-2)(x-3)(x+1)^2

B (x− 3)(x− 2)(x+ 1)2

The input is not processed in any way, except that Mathematica has rearranged the order
of the factors. The Expand command forces the expression to be multiplied out fully.

I Expand[%] (* % represents the last output *)9

B x4 − 3x3 − 3x2 + 7x+ 6

The inverse operation of factoring a polynomial – forming it into a product of lower degree
factors – is performed as best as possible using the Factor command

I Factor[%]

B (x− 3)(x− 2)(x+ 1)2

By default, Mathematica’s Factor command only attempts to factor polynomials having
(real) integer coefficients into terms that also have only integer coefficients. Thus neither of
the following accomplishes much.

I Factor[x^2-5] (* factoring requires
√

5 *)

B x2 − 5

I Factor[x^2+1] (* factoring requires i *)

B x2 + 1

9We usually discourage the use of the % sign in notebooks, but because we demonstrate so many short
sequences, one after the other, we’ll break our own rules when it’s convenient to do so – as it is now.
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If the coefficients of a polynomial are rational, as is the case with

p(x) =

(
3x+

1

2

)(
x− 4

5

)(
4x− 1

3

)

Expand produces an answer with integer coefficients and a lead, rational coefficient
1

30
(360x3−

258x2 − 29x+ 4), and then conveniently multiplies out the result.

I Expand[(3x+1/2)(x-4/5)(4x-1/3)]

B 12x3 − 43x2

5
− 29x

30
+

2

15

This result can be combined into factors, all having integer coefficients

I Factor[%]

B
1

30
(5x− 4)(6x+ 1)(12x− 1)

Factor will still work when polynomials have arbitrary real coefficients, such as π or e

I Expand[(x-Pi/2)(x+E/5)^3]

B x4 − πx3

2
+

3ex3

5
− 3

10
eπx2 +

3e2x2

25
− 3

50
e2πx+

e3x

125
− e3π

250

I Factor[%]

B − 1

250
(π − 2x)(5x+ e)3

Expand and Factor can be used when coefficients are approximate values.

I Expand[(2.23 x+1.5) (5.07x-7.36)]

B 11.3061x2 − 8.8078x− 11.04

I Factor[%]

B 11.3061(x− 1.45168)(x+ 0.672646)

The last expressions above involve approximate numbers, and thus we should take all the
algebra above as only approximations. In fact, although x = 7.36/5.07 must clearly be a
root of the original expression (2.23x+1.5)(5.07x−7.36), neither this nor its expansion and
subsequent factoring will evaluate exactly as zero when x = 7.36/5.07.

Finally, Factor will use complex numbers if at least one of the coefficients of the poly-
nomial is complex. For example, the polynomial p(x) = (5− 3i) + (−4 + i)x+ (1− i)x2 has
complex coefficients and can be easily factored.

I Factor[(5-3I)+(-4+I)x+(1-I)x^2]

B ((1 + i)− ix)((1 + i)x+ (1− 4i))

5.1.1.2 The Extension Option for Factor

As we’ve seen, Factor will not produce an output with complex coefficients unless the
polynomial has at least one complex coefficient. Thus

I Factor[x^2+1]

B x2 + 1

However, we can force Factor to consider factoring an expression over the complex num-
bers by specifying the Extension option. (The name comes from the mathematical notion
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that we must extend or enlarge the real numbers to include the imaginary number i = I in
order to find factors.)

I Factor[x^2+1, Extension→{I}]
B (x− i)(x+ i)

The Extension option can be used quite cleverly, in fact, if you know the form of the
factors. For example, neither x2 + 5 nor x2 − 5 can be factored without help, since the first
relies on the irrational number

√
5 and the second must have available both

√
5 and the

complex i = I.

I Factor[x^2-5, Extension→{Sqrt[5]}]
B −

(√
5− x

) (
x+
√

5
)

I Factor[x^2+5, Extension→{I,Sqrt[5]}]
B
(√

5− ix
) (√

5 + ix
)

5.1.1.3 Simplify and FullSimplify

A command related to Factor and Expand is Simplify. Given an expression, Simplify
performs a number of possible operations involving Factor and Expand, attempting to
produce what you’d probably consider the simplest way of rewriting the expression.

For example, given the polynomial x2−2x+1 = (x−1)2, Mathematica chooses to simplify
it with the shorter, factored expression

I Simplify[x^2-2x+1]

B (x− 1)2

On the other hand, while the polynomial x3 + 2x2−2x−1 factors as (x−1)(x2 + 3x+ 1),
Mathematica chooses its expression as a polynomial to be simpler, primarily because the
polynomial has only four terms, while the factored form has five!

I Simplify[x^3+2x^2-2x-1]

B x3 + 2x2 − 2x− 1

A close cousin of Simplify is FullSimplify. It attempts a somewhat wider range of
possible simplifications and may produce a different and perhaps more useful result.

I FullSimplify[x^3+2x^2-2x-1]

B (x− 1)(x(x+ 3) + 1)

It’s not clear that the result above is either helpful of preferred. However, whenever
Simplify does not seem to do much to help you, keep in mind that FullSimplify is ready
and waiting to step in to give it a try.

5.1.2 Rational Functions

Rational functions have the form
p(x)

q(x)
, where p and q are polynomials. Rational functions

not only have zeroes (when p(x) = 0), but some real values may not be in the domain (when
q(x) = 0).

5.1.2.1 Expand and Factor

Expand can be used for rational functions. It produces a result in which every term of
the polynomial p appears divided by q



Mathematica Notes c© 2009–2013, G. E. Keough (August 5, 2013 ) Page 62

I Expand[(1+2x+x^3)/(1+x)^2]

B
x3

(x+ 1)2
+

2x

(x+ 1)2
+

1

(x+ 1)2

The associated command ExpandAll does a little more, expanding the denominator as
well.

I ExpandAll[(1+2x+x^3)/(1+x)^2]

B
2x

x2 + 2x+ 1
+

1

x2 + 2x+ 1
+

x3

x2 + 2x+ 1

If Factor is applied to a rational function, it will factor both the numerator and denom-
inator

I Factor[(x^3-1)/(x^2-4)]

B
(x− 1)

(
x2 + x+ 1

)
(x− 2)(x+ 2)

Should there be common factors between the numerator and denominator, Factor will
usually remove them in the process

I Factor[(x^3 - 1)/(x^2 - 1)]

B
x2 + x+ 1

x+ 1

5.1.2.2 Together and Apart

We often combine algebraic expressions involving quotients over a common denominator.
The Together command performs this function.

I Together[x/(x^2-4) - 5/(2x+3)]

B
−3x2 + 3x+ 20

(2x+ 3) (x2 − 4)

The reverse process, of decomposing a rational function into what is called its partial
fractions expansion, is accomplished by the Apart command.

I Apart[%]

B
1

2(x+ 2)
− 5

2x+ 3
+

1

2(x− 2)

Apart is also useful if you wish to force division of an improper rational function (where
the degree of numerator is at least as large at the degree of the denominator).

I Apart[(2x^4-5x+2)/(3x-1)]

B
2x3

3
+

2x2

9
+

2x

27
+

29

81(3x− 1)
− 133

81

5.1.2.3 Numerators and Denominators

Mathematica provides commands to work separately with the numerator and denominator
of a rational function (or, any quotient expression, for that matter). The list is short
and, curiously, self-explanatory as to what each of these commands does: Numerator,
Denominator, ExpandNumerator, and ExpandDenominator.

For example, we would have

I Numerator[(1+2x+x^3)/(1+x)^2]



Mathematica Notes c© 2009–2013, G. E. Keough (August 5, 2013 ) Page 63

B x3 + 2x+ 1

5.1.3 Trigonometric Functions

The six, standard trigonometric functions are sine, cosine, tangent, cotangent, secant,
and cosecant. The commands Simplify, Expand, and Factor can certainly be used with
trigonometric functions.

However, rewriting trigonometric expressions “correctly” remains a mysterious goal for
students, due to the fact that each of the last four of these functions is defined in terms of
the first two, and the first two are related by the identity sin2(x) + cos2(x) = 1.

In short, there may be no best way to rewrite trigonometric expressions unless there’s
some obvious identity that appears.

Let’s see how Mathematica does.

5.1.3.1 Simplify

The Simplify command will, by default, use common trigonometric identities such as
sin2 x+ cos2 x = 1.

I Simplify[Sin[x]^2+Cos[x]^2]

B 1

Simplify will use other known identities, such as the double angle formula sin(2x) =
2 sin(x) cos(x).

I Simplify[2Sin[x] Cos[x]]

B sin(2x)

On the other hand, Simplify always prefers a short output, so we have the following,
even though sin(x) cos(x) = 1

2 sin(2x).

I Simplify[Sin[x] Cos[x]]

B sin(x) cos(x)

There are some variations on simplification when working with trigonometric functions.
One command that works with the output above is TrigReduce, which prefers replacing
products of sin(x) and cos(x) by expressions involving sin(2x) and the like.

I TrigReduce[Sin[x] Cos[x]]

B
1

2
sin(2x)

The online help provides other possibilities for alternate simplifications, one of which
involves changing Simplify’s default setting of Trig→True to Trig→False, although we’ll
not demonstrate that here.

5.1.3.2 Expand and Factor

The commands Expand and Factor usually do not rely on identities and double-angle
formulas and may seem ineffective when you first try to use them.

I Factor[Sin[2x]Cos[3x]-Sin[x]Cos[4x]]

I sin(2x) cos(3x)− sin(x) cos(4x)

I Expand[Sin[x]^2+Sin[2x]]

B sin2(x) + sin(2x)



Mathematica Notes c© 2009–2013, G. E. Keough (August 5, 2013 ) Page 64

But you can force Factor and Simplify to be more creative with trigonometric expres-
sions by specifying the option Trig→True.

I Factor[Sin[2x]Cos[3x]-Sin[x]Cos[4x],Trig→True]

I sin(x)(cos(x)− sin(x))(sin(x) + cos(x))

I Expand[Sin[x]^2+Sin[2x],Trig→True]

B
sin2(x)

2
− 1

2
cos2(x) + 2 sin(x) cos(x) +

1

2

In each of the output expressions above, you’ll notice that the output terms are presented
only in terms of sin(x) and cos(x).

5.2 Computer Algebra Technicalities

When you’re working with real numbers, there are definition issues that get in the way of
simplifications and algebra. And, as we mentioned several times already, Mathematica con-
siders its expressions over the complex numbers, where more interesting algebraic identities
exist.

Either of these concerns can sometimes get in the way of what you think Mathematica
should be doing. You may need to know about either a special command to handle the
situation, or a special option that could be enforced to control specific behavior.

5.2.1 Powers and Roots

When x is a nonnegative real number, we know that
√
x2 = x, because the regular rules

of exponentiation assert that the order in which we square and take the square root doesn’t
matter. Often, we’d write either

√
x2 = (x2)1/2 = x2· 12 = x1 = x

or √
x2 =

(√
x
)2

= (x1/2)2 = x
1
2 ·2 = x1 = x

However, for a negative number, this interchange of operations would be disastrous (e.g.,
the first sequence above makes sense for any x, but the second sequence makes no sense if
x is negative). This is the reason that Mathematica will not simplify

√
x2 as x

I Simplify[Sqrt[x^2]]

B
√
x2

One way to make Mathematica reduce
√
x2 as x is to use the command PowerExpand,

which essentially tells Mathematica that it’s OK to play games with the exponents as we
did above, forgetting about any possible domain issues. Thus

I PowerExpand[Sqrt[x^2]]

B x

5.2.2 Assumptions

There is a preferred method that you can use to force Mathematica to simplify
√
x2 as x,

while staying more faithful to the underlying mathematics. We will use the Assumptions
option of Simplify to alert Mathematica that we wish to assume that x is (real and)
nonnegative.

I Simplify[Sqrt[x^2],Assumptions→{x≥0}]
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B x

A similar situation occurs in trying to simplify ln(x2) as 2 ln(x), since this is true only if
x is (real and) positive. As a result, Mathematica will not simplify ln(x2) (remember below
that Mathematica uses the name Log for the natural logarithm).

I Simplify[Log[x^2]]

B log
(
x2
)

I Simplify[Log[x^2],Assumptions→{x>0}]
B 2 log(x)

As you see above, the format of an assumption is that of a logical condition. Conditions
can be quite detailed or state very specific domain specification such as “is a real number”
or “is an integer.”

For example, if x is any real number, we can write
√
x2 = |x|.

I Simplify[Sqrt[x^2],Assumptions→{x∈Reals}]
B |x|

(The symbol ∈ above, used mathematically to denote the phrase “is an element of,”
was entered using one of the Typesetting palettes. Alternatively, you could write Ele-
ment[x,Reals] for the assumption.)

Similarly, if x is a complex number written in the form x = a+ bi with a and b real, then
we still have

√
x2 = x as long as the real part of x is positive (if a > 0).

I Simplify[Sqrt[x^2],Assumptions→{Re[x]>0}]
B x

Assumptions are a very powerful tool in Mathematica. They’re especially useful for
integration purposes. Be sure you take a look at the online documentation. Start with
?Assumptions.

5.3 Solving Equations Symbolically

Mathematica’s capability to solve equations is quite impressive, whether we’re interested
in solving a single equation of a single variable (using either numeric or symbolic terms)
or a system of equations in any number of variables (also using either numeric or symbolic
terms). Not surprisingly, the basic command to use is Solve.

5.3.1 Syntax of the Solve Command

First we consider a simple problem, solving a linear equation of a single variable. Here
we “solve for x in the equation 2x+ 5 = 9.”

Mathematica’s Solve command handles this type of problem directly.

I Clear[x]

Solve[2x+5==9,x]

B {{x→2}}
The syntax of the Solve input is to first enter the equation to solve, and then enter the

variable for which to solve. (The variable can be omitted if only one variable appears in the
equation.) Two key syntax points to keep in mind here are

• The equation is entered using the double equal sign ==. If you use a single equal



Mathematica Notes c© 2009–2013, G. E. Keough (August 5, 2013 ) Page 66

sign (which means immediate assignment), you’ll either get an error or a result that is
meaningless to you (although perfectly sensible from Mathematica’s point of view).
• The variable of the equation must not have any previous meaning, so it’s recommended

that you use Clear before using Solve.

As for the output of Solve, we can certainly guess that x = 2 is the solution of 2x+5 = 9,
but what’s with all the syntax?

First, the result of Solve will always be a list. The equation 2x + 5 = 9 has only one
solution, but other equations may have more than one solution and a list is a convenient
way to report all of them. That explains the outer level of the curly braces { and }.

The list above has only one item in it, {x→2}. This itself is a list containing just one
substitution rule, x→2. The reason list syntax is used here is to allow for more than one
substitution rule, to handle situations where more than one variable appears in the solution
(you’ll see this shortly when we discuss solutions to system of equations). That explains
this inner level of curly braces { and }.

Finally, why is the result reported as the substitution rule x→2 and not simply as “2”?
The substitution rule syntax will make it easy to evaluate expressions in the future using
substitution (“/.”); and if the equation has more than one variable, how would you know
which solution belonged to which variable?

For example, we would check that we really do have a solution to the equation with

I 2x+5==9 /. {x→2}
B True

5.3.2 Handling the Result of Solve

We’ll use Mathematica syntax to keep track of solutions for us (so we can use them later)
by assigning it/them to a variable.

I Clear[x]

solutions = Solve[2x+5==9,x]

B {{x→2}}
Since solutions is a list (of only one element), we need a way to extract one (the first) of

its solutions. To do this, we use list subscript notation to pick out an item by its position
in the list.

I solutions[[1]] (* gets the first solution *)

B {x→2}
The double square brackets [[ and ]] are list specific syntax and denote an element of a

list by its position. It’s now easy to evaluate the equation with the (only) result found by
Solve.

I 2x+5==9 /. solutions[[1]]

B True

What if you want to “get the number 2,” and not a substitution rule for it? That’s easy,
but it uses a bit of syntax trickery. You form the expression x and you substitute 2 into x
in this expression.

I Clear[x] (* x must be symbolic to use this *)

x /. solutions[[1]]
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B 2

This is sometimes called the “dummy variable” trick and, despite its being a syntactic
curiosity for most students, it’s exactly what we need.

5.3.3 Multiple Solutions

The discussion above now extends easily to solving equations having more than one
solution. Consider the quadratic equation x2 − 3x+ 1 = 0, where its roots are found with

I solutions = Solve[x^2-3x+1==0,x]

B
{{
x→ 1

2

(
3−
√

5
)}
,
{
x→ 1

2

(
3 +
√

5
)}}

The output above is a list of two items (since there are two solutions), each of which is
itself a list of one item, namely a substitution rule for a solution.

I solutions[[1]]

B
{
x→ 1

2

(
3−
√

5
)}

I solutions[[2]]

B
{
x→ 1

2

(
3 +
√

5
)}

To see the solutions directly, we must use the dummy variable trick.

I x /. solutions[[1]]

B
1

2

(
3−
√

5
)

I x /. solutions[[2]]

B
1

2

(
3 +
√

5
)

Mathematica will report repeated roots of a polynomial as repeated substitution rules.

I Solve[x^3-2x^2+x==0,x]

B {{x→ 0}, {x→ 1}, {x→ 1}}
Finally, you should yet again be aware that Mathematica freely uses complex numbers,

so don’t be surprised by

I Solve[x^2-3x+5==0,x]

B
{{
x→ 1

2

(
3− i

√
11
)}
,
{
x→ 1

2

(
3 + i

√
11
)}}

5.3.4 Symbolic Solutions

Equations can certainly have symbolic parameters, such as we see in solving the equation
2x+ 5 = a for x, where a is an unknown constant.

I Clear[a,x]

Solve[2x+5==a,x]

B

{{
x→ a− 5

2

}}
We could go even a little farther. If y = f(x) = mx+ b is a linear function, then we can

solve this equation for y in terms of x with

I Clear[m,x,b]

Solve[y==m*x+b,x] (* notice the explicit use of * here *)
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B

{{
x→ y − b

m

}}
Mathematica certainly knows the quadratic formula in terms of symbolic coefficients a,

b, and c.

I Clear[a,b,c,x]

Solve[a*x^2+b*x+c==0,x]

B

{{
x→ −

√
b2 − 4ac− b

2a

}
,

{
x→

√
b2 − 4ac− b

2a

}}
If necessary, Mathematica can produce (symbolic) solutions to polynomial equations up

through degree 4, although the symbolic solutions of a cubic ax3 + bx2 + cx + d = 0 will
easily fill up your computer screen.

5.3.5 Solve and High Degree Polynomials

For polynomial equations involving a single variable of degree 5 or higher, Solve will only
succeed if the polynomial can be factored into lower-degree polynomials, each having degree
four or less.

For example, the polynomial p(x) = x5 − x4 − 1 factors easily:

I Factor[x^5-x^4-1]

B
(
x2 − x+ 1

) (
x3 − x− 1

)
Consequently, explicitly solving the equation x5−x4− 1 = 0 is possible in this case since

we can solve both of the equations q(x) = x2 − x+ 1 = 0 and r(x) = x3 − x− 1 = 0. Thus
Solve successfully finds all five solutions of the equation x5 − x4 − 1 = 0 (we show only
the fifth solution symbolically, but we also can see numeric approximations for all of the
solutions using N).

I solutions = Solve[x^5-x^4-1==0,x]];

solutions[[5]]

B

{
x→ − 1

6

(
1− i

√
3
)

3

√
27
2 −

3
√

69
2 − (1+i

√
3) 3

√
1
2 (9+

√
69)

232/3

}
I N[solutions]

B {{x→ 0.5 + 0.866025i}, {x→ 0.5− 0.866025i},
{x→ 1.32472}, {x→ −0.662359 + 0.56228i},
{x→ −0.662359− 0.56228i}}

If a polynomial of degree 5 or higher does not factor into lower degree polynomials (each
of degree four or less), Solve will fail. Its output may be syntactically frightening (and we
only show the first few terms of the output below)

I solutions = Solve[x^5-x^3-1==0,x]

B
{{
x→ Root

[
#15 −#13 − 1&, 1

]}
, . . .

}
Each of the “roots” above is written using the Root command (usually, you will not

actually use the Root command yourself). The first that is shown represents “the first root
of the equation x5 − x3 − 1,” with the #1 notation representing the (first) variable. There
is no closed form expression for it.

Nevertheless, you can still see numerical approximations for the roots

I N[solutions]
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B {{x→ 1.23651}, {x→ −0.959048− 0.428366i},
{x→ −0.959048 + 0.428366i}, {x→ 0.340795− 0.785423i},
{x→ 0.340795 + 0.785423i}}

5.3.6 Solve and Non-Polynomial Equations

Not every equation of a single variable involves only polynomial (or, for that matter,
rational) functions. Solve does a reasonable job on many algebraic equations, such as√

x

x2 + 1
= 12, which has two complex solutions (although we’ll not show the symbolic solu-

tions, which fill up a full page of output).

I solutions = Solve[Sqrt[x]/(1+x^2)==12,x];

N[solutions]

B {{x→ 0.0294564− 0.97053i}, {x→ 0.0294564 + 0.97053i}}
However, Solve has significant problems with equations involving transcendental func-

tions. Even simple equations such as the following have no symbolic “solution,” and your
input is returned unevaluated.

I Solve[Sin[x]==x,x]

B Solve::tdep: The equations appear to involve the variables
to be solved for in an essentially non-algebraic way.

Solve[Sin[x] == x, x]

This equation sin(x) = x has a single solution of x = 0, yet to find a symbolic solution, our
only hope is perhaps to apply the inverse sine function sin−1 to both sides of the equation,
producing the equation sin−1(sin(x)) = sin−1(x), or x = sin−1(x). This equation is not
significantly different from the first equation, and there’s little hope of proceeding on the
basis of algebraic canceling or applying identities.

On the other hand, if a is a symbolic quantity, we have the following

I Solve[Sin[x]==a,x]

B Solve::ifun: Warning: Inverse functions are being used
by Solve, so some solutions may not be found . . .

{{x→ sin−1(a)}}
Here again, Mathematica applied the inverse sine function to both sides of the equation

sin(x) = a to produce x = sin−1(a). This is a correct solution, as long as you’re looking
for a solution satisfying −π2 ≤ x ≤

π
2 (this is the substance of the warning received above).

Otherwise, a numeric method (discussed later in the text) is likely our best option to find a
solution of interest.

5.3.7 Solving Systems of Equations

Consider solving two equations in two unknowns, such as{
3x+ 8y = 5

5x+ 2y = 7

The Solve command can handle such systems of equations using an extended syntax. The
individual equations are input as items of a list, and the variables in which the system is to
be solved also are input as items of a list.

I Clear[x,y]

Solve[{3x+8y==5,5x+2y==7},{x,y}]
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B

{{
x→ 23

17
, y → 2

17

}}
Solutions can be generated in purely symbolic terms, so that the same system in which

the constants 5 and 7 are replaced by symbolic constants a and b can be solved{
3x+ 8y = a

5x+ 2y = b

I Clear[x,y,a,b]

Solve[{3x+8y==a,5x+2y==b},{x,y}]

B

{{
x→ 1

17
(4b− a), y → 1

34
(5a− 3b)

}}
The equation or system of equations specified for Solve is not required to be linear.

For example, the following system has two real and two complex solutions. However, we’ll
display them only numerically (the symbolic display is quite large, if not interesting on its
own). {

3x− y2 = 4

2x2 + y = 9

I solutions = Solve[{3x-y^2==4,2x^2+y==9}, {x,y}];
N[solutions,5]

B {{x→ −2.1343− 0.3784i, y → 0.17570− 3.2301i},
{x→ −2.1343 + 0.3784i, y → 0.17570 + 3.2301i},
{x→ 1.9539, y → 1.3645}, {x→ 2.3147, y → −1.7159}}

5.3.7.1 Extracting Solutions of Systems

The same dummy variable trick we demonstrated earlier can be used to extract solution
values. For example, with the system used to open this section{

3x+ 8y = 5

5x+ 2y = 7

we have

I Clear[x,y]

solutions = Solve[{3x+8y==5,5x+2y==7},{x,y}];
x /. solutions[[1]]

B
23

17

I y /. solutions[[1]]

B
2

17

5.3.7.2 Existence of Solutions

Remember that some systems of equations will have no solution, such as the inconsistent
system with equations x+ y = 1 and x+ y = 2.

I Solve[{x+y==1,x+y==2},{x,y}]
B {}
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A list of possible solutions has been returned as expected, but it has no elements. Always
watch for empty returns, signifying that the system has no solutions.

Also, watch for possible dependencies among equations. For example, we have

I Solve[{x+y==1,2x+2y==2},{x,y}]
B Solve::svars: Equations may not give solutions

for all ¨solve¨ variables.
{{x→ 1− y}}

Since the second equation 2x + 2y = 2 above is a simple multiple of the first equation
x + y = 1, we’ve actually asked Solve to find a solution to the single equation x + y = 1.
The message received and the result reported show that the y variable has been treated as
a symbolic parameter and the equation has been solved for x in terms of y.

However, there will be times when it is desired to find a solution to a system of n equations
in m variables with n < m. The example above is exactly such a situation where we ask
to solve (what is essentially) one equation in the two unknowns x and y, and Mathematica
selected y to be a parameter to describe the solution.

If you use Solve and specify fewer variables to solve for than are present in the equations,
you are indicated that the variables you do not explicitly name to solve for to be treated as
parameters in the solution, such as in

I Solve[{x+y+z==1,x+2y+3z==3},{x,y}] (* x and y named, z symbolic *)

B {{x→ z − 1, y → −2(z − 1)}}
One possible application of this result is that the intersection of the two planes x+y+z = 1

and x + 2y + 3z = 3 in three-space consists of a line parameterized as the set of points
(z − 1,−2z + 2, z), for z real.

5.4 Solving Equations Numerically

In general, Solve is a limited command, used best with low-degree polynomials, ratio-
nal functions, and some algebraic functions. Each maintenance update or new version of
Mathematica seems to extend its capability; but the general problem of finding complete,
symbolic solutions to equations remains a difficult one.

Numerical techniques have been developed over the course of literally hundreds of years
of mathematics to find approximate solutions to (specific types of) equations. The subject
of Numerical Analysis has a deep history and is well worth studying on its own. Mathe-
matica implements many of its techniques, although they are disguised in just two powerful
commands that we now describe.

5.4.1 NSolve

NSolve is the command you should use when solving one or more polynomial equations
and you’re satisfied with approximate, numerical solutions (rather than exact solutions).

The input syntax and output format of NSolve is exactly the same as Solve. Unlike
Solve, however, there is no practical degree restriction for the equation to solve.

I NSolve[x^5-x^3-1==0,x]

B {{x→ −0.959048− 0.428366i}, {x→ −0.959048 + 0.428366i},
{x→ 0.340795− 0.785423i}, {x→ 0.340795 + 0.785423i},
{x→ 1.23651}}
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NSolve can also be used to find solutions to systems of equations, with exactly the syntax
of Solve for such systems. This will not be shown here, however.

5.4.2 FindRoot

The FindRoot command is an extremely powerful tool used to find a solution of an
equation, and thou should expect to use it often when working problems in Mathematica.

Unlike Solve and NSolve, however, FindRoot does not find “all solutions” to an equa-
tion; rather, it must be instructed to look for a single solution to an equation near where a
solution is known (or is virtually certain) to exist.

More importantly, however, FindRoot works only with approximate numerical values
and cannot find solutions of equations symbolically. While this may seem to be a limitation,
the fact is that finding a symbolic solution to an equation may not only be difficult but may
simply be impossible; and in practice, this is more than sufficient.

Example. We wish to find the zeroes or roots of the function f(x) = x6 + 5x3− 8ex. That
is, we wish to find all solutions to the equation f(x) = 0.

We begin by examining a simple graph of f to get a sense of where on the number line f
might have a zero.

I Clear[f]

f[x ] := x^6 + 5x^3 - 8Exp[x]

Plot[f[x],{x,-3,3}]
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In rather gross terms, we can see that f crosses the axis near x = 1.6 and again near
x = −1.8. We’ll first ask FindRoot to look for an approximation for the zero near x = 1.6
with

I solution = FindRoot[f[x]==0, {x,1.6}]
B {x→1.63614}

We should now believe that the number 1.63614 provides a suitable numerical approx-
imation of a zero of f . (We’ll address the issue of working with more digits of precision
shortly).

Notice that the output of FindRoot is a list containing a single substitution rule of
x → 1.63614. Thus we can see if we really have found a zero for f by simply using this
substitution rule

I f[x] /. solution

B −1.77636× 10−14

Notice we did not get an exact zero. FindRoot only works with approximate numerical
values. However, we can accept that the approximate numerical value found by FindRoot
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of x ≈ 1.63614 provides a suitable estimate of the zero of f near 1.6 – and we can see that
f is essentially zero at this value (f(x) ≈ −0.0000000000000177636). Although the result is
not exactly zero, we’re quite satisfied.

To “find” the second root we see in the graph near x = −1.8, we have:

I solution = FindRoot[f[x]==0, {x,-1.8}]
B {x→−1.73985}

Have we completed the problem – to find all zeroes of the function f? On the one hand,
the best (and, frankly, only) option we have is to provide numerical approximations of the
roots, and with that in mind, it appears we’ve found the zeroes.

But how do you know that we’ve found all the zeroes? In fact, there is a third zero for
f , and you’ll need to apply your mathematical knowledge of the growth of the individual
terms x6 and ex to recognize that the third root of f will lie farther to the right of the
origin. Do you know why?

Once you determine that the third root lies to the right of the origin, then you have to
come up with a rough approximation of it. The following graph – after some experimentation
was done – provides the information we need

I Plot[f[x],{x,0,15}]
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The third zero is near 13.5, thus we can use

I FindRoot[f[x]==0, {x,13.5}]
B {x→13.5695}

Example. Find all solutions of the equation cosx = x.

Solving the equation cosx = x is the equivalent to finding where the graphs of f(x) = cosx
and g(x) = x intersect. We’ll provide a quick sketch near the origin.

I Plot[{Cos[x],x},{x,-π,π}]
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We can see that the graphs intersect somewhere between perhaps 0.5 and 1.0 – and
because these are such simple functions that we so well understand, we know that this is
the only intersection of the graphs.

To solve the equation cosx = x, then, we use FindRoot, asking it to investigate the area
nearby our choice of x = 0.75, subsequently finding that a solution to the equation exists at
x ≈ 0.739085.

I FindRoot[Cos[x]==x, {x,0.75}]
B {x→0.739085}

5.4.2.1 Troubleshooting FindRoot

To properly apply FindRoot, you must first have some knowledge of where solutions to
equations are likely to be found. Graphing, together with some mathematical understanding
of the situation, provides a simple technique to help you identify where solutions might be
found.

At this point, we’ll defer any extended discussion about the inner workings and technical
issues related to FindRoot. For most of what you’ll see in the sequel, you already have
enough to work with. However, you should have already suspected that the following are
the main issues in properly using FindRoot.

(a) How sensitive is FindRoot to your choice of a guess as to where a root is located?
The answer in general is complicated, unfortunately, but “the closer you can locate
a solution to get started, the better.”

(b) How accurate is the answer produced by FindRoot? In general, it’s pretty good, but
what’s pretty good for a Calculus student may not be good enough in an application.
If you need more information about precision concerns, you should look into the
options AccuracyGoal, PrecisionGoal, and WorkingPrecision that allow you
more control over your concerns.

(c) Will FindRoot always find the root nearest to where you start looking? The answer
is, unfortunately, no. If FindRoot succeeds, you’ve found a solution – just possibly
not the one you thought you were looking for.

(d) Can FindRoot fail? Yes, unfortunately, it can, and sometimes in spectacular fash-
ion.

Other than checking on-line documentation for FindRoot, you’ll only best appreciate
its strengths and weaknesses once you become familiar with Newton’s Method in your first
Calculus course.

5.4.2.2 FindRoot and Systems of Equations

FindRoot may also be used to find solutions to systems of equations. Consider finding
a solution to the simultaneous system:{

x = 2y + 3 cosx

y = x− 4

There is a simple way to solve this particular system: replace y in the first equation with
the expression x− 4 (from second equation), then solve numerically for x. Using the result,
you then determine the value of y. For demonstration purposes, however, suppose we don’t
immediately see this.

The two equations above can each be understood to define curves in the plane (see
Section 4.1). Finding a solution to this system is equivalent to locating points at which the
curves intersect.
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These two curves are easily drawn with ContourPlot (although our choices of ranges
for the variables x and y required some experimentation before settling on the rectangle on
0 ≤ x ≤ 15, −5 ≤ y ≤ 15).

I ContourPlot[{x==2y+3Cos[x], y==x-4},
{x,0,15}, {y,-5,15},
Frame→False, Axes→True]
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The curves appear to intersect in three points, near (6, 2), (8, 4) and (10, 6).

In this situation, FindRoot implements a two-variable generalization of its one-variable
methods. The syntax necessary requires that the equations be specified as a list, and that
nearby values of likely solutions be specified for of each of the variables.

Using these three estimates for intersections, approximate solutions to the system may
be found:

I FindRoot[{x==2y+3Cos[x],y==x-4},{x,6},{y,2}]
B {x→ 5.6256, y → 1.6256}
I FindRoot[{x==2y+3Cos[x],y==x-4},{x,8},{y,4}]
B {x→ 7.78087, y → 3.78087}
I FindRoot[{x==2y+3Cos[x],y==x-4},{x,10},{y,6}]
B {x→ 10.1814, y → 6.18143}

5.5 Exercises

1. Solve each of the following equations or systems of equations.

(a) x3 + 2x = 17

(b)

{
9x+ 2y = 17

5x− 7y = 23

(c)

{
3x+ πy = a

2x− 5y = b
, for constants a and b

(d)

{
3x2y + xy = 3

xy3 − 18y = 9

2. Find all common factors of the polynomials p(x) = x5 − x4 − 81x + 81 and q(x) =
x5 − 3x4 − x+ 3.



Mathematica Notes c© 2009–2013, G. E. Keough (August 5, 2013 ) Page 76

3. Use Factor to verify that

x2 − 1 = (x− 1)(x+ 1)
x3 − 1 = (x− 1)(x2 + x+ 1)
x4 − 1 = (x− 1)(x+ 1)(x2 + 1)
x6 − 1 = (x− 1)(x+ 1)(x2 − x+ 1)(x2 + x+ 1)

Notice that all coefficients in the fully-factored forms above are ±1.

Choose any ten values of a positive integer 10 ≤ n ≤ 100 at random, and factor xn− 1,
for each of your choices. Do you observe that all coefficients of the polynomials in the
fully-factored forms are ±1? What might you conjecture from these observations?

4. Find a polynomial of the form p(x) = ax3 + bx2 + cx + d whose graph contains the
points (−1, 1), (0, 3), (3,−4) and (5, 4), by using the Solve command. Graph the result
over the interval [−2, 6] to see that the right polynomial has been obtained.

5. Any circle in the plane will have an equation of the form x2 + y2 + ax + by + c = 0,
where a, b and c are constants. Find the equation of the circle that goes through the
points (2.3, 3.4), (3.7, 5.8) and (6.1,−1.2).

6. Let r be a fixed, positive constant.

(a) Find the equation of the parabola which has vertex at (0,−2r), and goes through
the points (r, 0) and (−r, 0). Write your answer in the form p(x) = ax2 + bx+ c.

(b) Find the point in the first quadrant where the parabola of part (a) intersects
the ellipse having vertices at (±2r, 0) and (0,±r).

(c) Check your answers to parts (a) and (b) both numerically and graphically when
r = 1.
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6 Calculus Applications (I)

So far, we’ve presented the basic tools of Mathematica that we use: functions, graphs,
and computer algebra. Beginning with this chapter, we’ll focus more on mathematical
topics. New Mathematica commands and syntax will certainly be needed, but will now
more naturally arise according to the mathematical subject areas we discuss.

Our choice of topics in this chapter come from the beginning notions of calculus.

6.1 Inverse Functions

Inverse functions are important components of the Calculus toolbox. The natural loga-
rithm is often defined as the inverse of the natural exponential, and the inverse trigonometric
functions are indispensable tools when it comes to integration.

6.1.1 What Are Inverse Functions?

Definition. Given a function f defined on a domain D, we say that f has an inverse
function if there is a function g defined on the range of f so that g(f(x)) = x, for all x ∈ D.
Notationally, we write g = f−1, or that g(x) = f−1(x), and we call g the inverse of f .

Two simple examples will help explain the definition.

(a) The linear function f(x) = 3x+ 5 is defined for all real x. Its range is R, the set of
all real numbers. If we define g on R by setting g(x) = (x − 5)/3, we can see that
g(f(x)) = x, for all real x. The function g is then the inverse function for f .

(b) The natural exponential function f(x) = ex is defined for all real x and has range
{x | x > 0}. We see that the inverse of f is g(x) = ln(x), defined for all x > 0, since
g(f(x)) = ln(ex) = x for all real x.

Not every function has an inverse. The usual example is to consider f(x) = x2 defined
on the domain D = R, the set of all real numbers. Since f(1) = f(−1) = 1, there cannot
be a function g such that g(f(x)) = x. Indeed, if such a g existed, we’d have to have both
1 = g(f(1)) = g(1) and −1 = g(f(−1)) = g(1), which is senseless if g is to be a function.

What types of functions f have inverses? The answer is well-known: the function f must
be one-to-one on its domain D, that is, if whenever we select two values x1 and x2 in D
and f(x1) = f(x2), then it must be the case that x1 = x2. This technical condition simply
states that if we write y = f(x), then every y in the range of f must arise from a unique x
in D.

Functions that are either strictly increasing or strictly decreasing on their domain nec-
essarily have inverses. Thus, simply examining the graph of f may often be enough to
convince you that a function has an inverse.

Note that if f has an inverse function g, then we certainly have g(f(x)) = x for all x in
the domain of g. But consider any y in the range of f . Then x = g(y) has the property
that y = f(x) = f(g(y)), and so the composition f(g(y)) = y. Therefore, f is the inverse
function of g and we see that inverse functions must always occur in pairs. In other words,
if g = f−1, then f = g−1.

6.1.2 Finding Formulas for Inverse Functions

We turn our attention to using Mathematica (if possible) to find a formula for an inverse
function, should one exist.

If f has an inverse function, it algebraically means that the equation y = f(x) can be
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solved for x in terms of y. For the function y = f(x) = 3x + 5, we solve for x in terms of
y as x = (y − 5)/3, and so the inverse function is g(y) = (y − 5)/3 – although we usually
switch the roles of the variables at this point, writing y = (x− 5)/3 or g(x) = (x− 5)/3.

Thus we can use Mathematica to find inverse functions algebraically by using the Solve
command, at least in the simple cases where we expect that it will succeed.

Consider finding an inverse for the linear function f(x) = 3x+ 5.

I Clear[f]

f[x ] := 3x+5

To solve the equation y = 3x+5 in terms of x is an easy exercise for the Solve command.

I Clear[x,y]

Solve[y==f[x],x]

B

{{
x→ y − 5

3

}}
We use this response to define a function g as a function of a variable y using this solution.

I Clear[g]

g[y ] := (y-5)/3

We can verify that g(f(x)) = x = f(g(x)), for all real x, convincing us that f and g really
are inverse functions.

I f[g[x]]

B x

I g[f[x]]

B x

As a second example, consider the function f(x) = x2 +x. As a function defined on all of
R, this does not have an inverse function, as we can see from its graph on an interval near
to the origin.

I f[x ] := x^2+x

Plot[f[x],{x,-2,3}]
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What feature of the graph suggests that there is no inverse for f? The graph shows
specifically that f(−2) = f(1) = 2, so f is not one-to-one. Said geometrically, the horizontal
line y = 2 cuts the graph of f in more than one point.

More generally, if any horizontal line intersects the graph of f in more than one point, f
cannot have an inverse. Most texts call this the horizontal line test.
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Nevertheless, the graph of this parabola suggests that the function will have an inverse if
restricted to either the intervals (−∞,−1/2] or [−1/2,∞), since the function will be strictly
decreasing or strictly increasing, respectively, on these intervals.

Consider restricting to the interval [−1/2,∞) and plotting, to demonstrate that the func-
tion is increasing:

I Plot[f[x],{x,-1/2,3}]
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Notice that since f(−1/2) = −1/4, the range of f with this domain restriction will be
exactly {y | y ≥ − 1

4}. Thus the inverse we’re hoping to find will have this set as its domain.

To find the inverse, simply solve for y = f(x) = x2 + x in terms of x

I solutions = Solve[y==f[x],x]

B
{{
x→ 1

2

(
−
√

4y + 1− 1
)}
,
{
x→ 1

2

(√
4y + 1− 1

)}}
Since this discussion of an inverse is now restricted to the right half of the parabola with

values of x ≥ −1/2, we’ll use the second of the solutions returned by Solve to define an
inverse function, since its values will always satisfy x ≥ − 1

2 when y ≥ − 1
4 . We’ll use the

dummy variable trick to define g.10

I g[y ] = x /. solutions[[2]]

B 1
2

(√
4y + 1− 1

)
Of course, the function g is defined only for values y ≥ −1/4. To see, then, that f and g

are inverse functions, you only need to compute f(g(x)) and g(f(x))

I Simplify[f[g[x]]]

B x

I Simplify[g[f[x]]]

B 1
2

(√
(2x+ 1)2 − 1

)
The first of these results is as expected, but the second is not. Mathematica cannot

Simplify this last expression, since the value of
√

(1 + 2x)2 is not symbolically the same as
1 + 2x unless 1 + 2x ≥ 0. But in this case we specifically do require x ≥ −1/2. Thus we can
legitimately use PowerExpand to collapse exponents to be (1 + 2x)2(1/2) = 1 + 2x

I PowerExpand[%]

B x

We’re now convinced that f−1(y) = g(y) = 1
2

(√
4y + 1− 1

)
.

10We must use immediate assignment (=) here, rather than delayed assignment (:=). We see the result
of the definition to confirm what we’ve done, and the definition of g will not change later should the variable
solutions change.
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6.1.3 The Geometry of Inverse Functions

There is a simple and pleasing relationship between the graph of a function and that of
its inverse (when one exists). A point P = (x, y) will be on the graph of f if and only if
the point Q = (y, x) is on the graph of f−1. But as the diagram below suggests, the line
segment between the points P and Q will then have the line y = x as its perpendicular
bisector. Thus the graph of f−1 will always be the symmetric image of the graph of f in
the line y = x.

P Hx,yL

Q Hy,xL

y = x

First, we’ll check this relationship in the graphs of the natural exponential and logarithm
functions. However, getting a pleasing yet accurate picture requires making separate plots
of the two functions (over appropriate intervals) and the line y = x and then combining
them.

I graph1 = Plot[Exp[x], {x,-1,1}];
graph2 = Plot[Log[x], {x,1/E,E}]
graph3 = Plot[x, {x,-1,E},

PlotStyle→{Thin, Black, Dashed}]
Show[graph1, graph2, graph3,

AspectRatio→Automatic,

PlotRange→{{-1,E},All}, Ticks→None]

Now, consider using this graphic relationship in reverse. That is, should a function f have
an inverse, we can see the graph of its inverse just by plotting a graph with the coordinates
reversed. There’s no need to work through algebra to find a formula for the inverse function;
rather, we’ll simply sketch the parametric curve {(f(x), x) | a ≤ x ≤ b}.

As an example, the function f(x) = sin(x) is strictly increasing on −π2 ≤ x ≤
π
2 , thus we

can see its inverse (i.e., the inverse sine function) with the following which reverses the x
and y coordinates.11

11If you’d like something more graphically-driven than using a ParametricPlot, the following sequence
more directly “flips the graph over the line y = x.” See if you understand why!

Rotate[ImageReflect[Plot[Sin[x], {x,−π/2,π/2}, AspectRatio→Automatic], Left→Right], 90 Degree]



Mathematica Notes c© 2009–2013, G. E. Keough (August 5, 2013 ) Page 81

I ParametricPlot[{Sin[x],x}, {x,-Pi/2,Pi/2},
Ticks→{{-1,1},{-Pi/2,Pi/2}}]

-1 1

-
Π

2

Π

2

Be sure you catch the subtlety of what’s been done above. Even though we don’t think of
the inverse sine function to be given by a formula, we know it exists, we can see its graph,
and we know several its values.

6.2 Limits

The notion of a limit is central to calculus. The definitions of the derivative, the integral,
and many notions involving convergence (e.g., series) depend on it.

6.2.1 The Limit Concept

We begin by considering the function f(x) =
2x2 − 5x− 3

x− 3
, a rational function that is

defined for all x 6= 3. Many students immediately think “asymptote,” but this is certainly
not the case.

I Clear[f]

f[x ]:= (2x^2-5x-3)/(x-3)

Plot[f[x], {x,0,6}]
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Other than not being defined at x = 3, this function is quite well-behaved around x = 3
graphically. The same is true numerically.

To see this, we’ll make a short list of values of f near (and including!) x = 3 in a single
input, with the items separated by commas and enclosed in curly braces { and }.

I {f[2.998],f[2.999],f[3],f[3.001],f[3.002]}
B {6.996, 6.998, Indeterminate, 7.002, 7.004}

The output above comes with warnings from Mathematica about the lack of meaning of
the term f(3) we included; but otherwise, the values of f near x = 3 all appear to be about
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7. If f were to be defined at x = 3, and if we wanted the graph to nicely resemble the graph
we drew above, then we’d clearly want to have f(3) = 7.

We summarize the statements above in writing limx→3 f(x) = 7. More needs to be said,
of course, to properly define the meaning of a limit, but a numerical approach is usually the
first approach taken towards understanding the concept of a limit.

Fortunately, our calculus books will add all the necessary detail about the precise meaning
of writing limx→3 f(x) = 7, and we’ll not replicate that discussion here.

6.2.2 The Limit command

Mathematica’s Limit command performs a symbolic computation of the limit of an ex-

pression that depends on a single variable. For example, to evaluate lim
x→3

2x2 − 5x− 3

x− 3
discussed above, we’d use

I Clear[f]

f[x ]:=
2x2 − 5x− 3

x− 3
Clear[x] (* x must be symbolic for Limit to to work! *)

Limit[f[x],x→3]

B 7

The point at which the limit is computed is specified using the familiar “arrow syntax,”
made up of a minus sign and a greater-than sign. This nicely replicates the mathematical

notation “x→ 3” we see in writing lim
x→3

2x2 − 5x− 3

x− 3
.

Another common example (one that is fundamental to understanding both limits and

working with trigonometric functions) is that lim
x→0

sinx

x
= 1

I Limit[
sinx

x
,x→0]

B 1

Limit is capable of handling most computations which would ordinarily involve advanced
techniques such as L’Hôpital’s Rule. Indeed, we’d use this rule to compute mathematically
that:

lim
x→0

ex − 1− x
x2

= lim
x→0

ex − 1

2x
= lim
x→0

ex

2
=

1

2

Mathematica handles this calculation directly:

I Limit[
ex − 1− x

x2
, x→0]

B
1

2

Limit will properly report infinite limits, as in

I Limit[
1

x2
, x→0]

B ∞
When a limit does not exist, or if Mathematica is unable to determine whether a limit

exists – perhaps because you’ve supplied an expression that is symbolically ambiguous –
you’ll likely have your input returned as output.

I Clear[f,x]
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Limit[f[x], x→0]

B lim
x→0

f(x)

However, you need to be aware of an important implementation note concerning the
Limit command.

ý Just because Mathematica reports a limit, it doesn’t necessarily mean that
the limit exists. Indeed, the Limit command reports the right-hand limit of an
expression.

Example. A standard result with which you’re familiar is that lim
x→0

|x|
x

does not exist.

However, Mathematica reports that

I Limit[Abs[x]/x, x→0]

B 1

In fact, Mathematica reports that lim
x→0+

|x|
x

= 1, which is correct. Don’t be tricked –

you’ll need to now examine the left-hand limit at 0.

To compute a left-hand limit, you add the Direction option to the Limit command and

specify its value to be +1. Thus the left-hand limit lim
x→0−

|x|
x

= 1 is computed with

I Limit[Abs[x]/x,x→0,Direction→+1]

B −1

It is only now, when we compare this result to the Limit computation above (where we

did not specify the Direction), that we conclude that lim
x→0

|x|
x

does not exist (and, more

specifically, that it has a jump discontinuity, if you’re familiar with the term).

One-sided limit computations arise all the time with rational functions, for which we

often suspect the presence of vertical asymptotes in a graph. For example, y =
1− x
x− 3

has

a vertical asymptote at x = 3, and by hand we should certainly be able recognize the left-
and right-hand limits

lim
x→3−

1− x
x− 3

= +∞ and lim
x→3+

1− x
x− 3

= −∞

In Mathematica, the computation looks like this

I Limit[
1− x
x− 3

, x→3, Direction→+1] (* left-hand limit *)

B ∞

I Limit[
1− x
x− 3

, x→3, Direction→-1] (* right-hand limit *)

B −∞
The Direction option should be +1 for left-hand limits, and using −1, the default value,

can certainly be explicitly specified for a right-hand limit.

ý The +1 is used to denote the computation of the limit as the value of the
variable increases, coming from the left; −1 is used to denote the computation
of the limit as the value of the variable decreases, coming from the right. Don’t
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confuse the sign of the Direction specifier with the mathematical ± sign used
to denote left- and right-hand limits.

6.2.2.1 Limits at Infinity

Limits at infinity such as lim
x→±∞

x√
x2 + 1

= ±1 can be computed in Mathematica

I Clear[f]

f[x ] := x/Sqrt[x^2+1]

Limit[f[x],x→Infinity]

B 1

I Limit[f[x],x→-Infinity]

B −1

We can now conclude that the function f(x) =
x√

x2 + 1
has a horizontal asymptote at

y = 1, as x→ +∞, and at y = −1, as x→ −∞. Indeed, consider:

I Plot[{-1,1,x/Sqrt[x^2+1]},{x,-10,10},
PlotStyle→{{Dashed},{Dashed},{Black}}]
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6.2.2.2 Symbolic Limits

Limits can be found even when expressions depend on symbolic parameters. For example,
Mathematica can make the specific computation that limx→0(3x+ 1)1/(2x) = e3/2

I Limit[(3x+1)^(1/(2x)), x→0]

B e3/2

Impressively, Mathematica can make the more general, symbolic computation that limx→0(ax+
1)1/(bx) = ea/b, for any symbolic constants a and b

I Clear[a,b]

Limit[(a*x+1)^(1/(b*x)), x→0]

B ea/b

Similarly, if a and b are constants, we would algebraically make this lengthy calculation
of a limit at infinity.

lim
x→∞

(
√
x2 + ax+ b− x) =

lim
x→∞

(
√
x2 + ax+ b−

√
x2)

√
x2 + ax+ b+

√
x2

√
x2 + ax+ b+

√
x2

= lim
x→∞

ax+ b
√
x2 + ax+ b+

√
x2
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= lim
x→∞

a+ b/x√
1 + a/x+ b/x2 +

√
1

=
a

2

The Limit command reproduces this result (despite issuing warnings that it is evaluating
an indeterminate expression of the form ∞−∞):

I Limit[Sqrt[x^2+a*x+b]-x,x→Infinity]

B Infinity::indet: Indeterminate expression
-Infinity + Infinity encountered.

a

2

6.3 Continuity

For a function f to be continuous at a point x = a, we require that both limx→a f(x)
and f(a) exist and that they be equal. We usually condense the language by simply writing
that limx→a f(x) = f(a).

Geometrically, a function continuous at a point x = a has a graph without any holes,
skips, or jumps near x = a. Most functions we work with in practice (polynomials, rational
functions, trigonometric, exponential, and logarithmic functions) are continuous wherever
they are defined.

We provide only one example here specifically related to continuity, using Mathematica
to determine the constants a and b so that the following function becomes continuous on R.

f(x) =


x2 + 2 x < 1

ax+ b 1 ≤ x ≤ 4

x− 5 x > 4

Should we attempt to plot the graph of f as defined, we of course see nothing appearing
over the interval [1, 4] since f does not yet have numerical values there.

I Clear[f,a,b]

f[x ] := Piecewise[{
{x^2+2, x<1},
{a*x+b, 1<=x<=4},
{x-5, x>4}
}]

Plot[f[x], {x,0,5}]
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Geometrically, the values of a and b must be chosen to “connect the dots,” since the graph
of f will be linear on [1, 4]. Analytically, the problem is one of arranging for continuity by
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selecting a and b so that limx→1− f(x) = f(1) = a + b and limx→4+ f(x) = f(4) = 4a + b.
Thus we have

I lim1 = Limit[f[x], x→1, Direction→+1];

lim4 = Limit[f[x], x→4, Direction→-1];

solutions=Solve[{lim1==f[1],lim4==f[4]}, {a,b}]
B
{{
a→ − 4

3 , b→
13
3

}}
Let’s be sure we have the correct solutions. We’ll now define a and b using this result

(using, once again, the dummy variable trick) and see what the graph looks like.

I a = a /. solutions[[1]];

b = b /. solutions[[1]];

Plot[f[x], {x,0,5}]

1 2 3 4 5
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Mission accomplished!

6.4 Exercises

1. Find the inverse function for each of the following functions, and verify that the graphs
of the function and its inverse are symmetric in the line y = x.

(a) f(x) = x3 + 2x

(b) f(x) =
7x+ π

x− 1

2. A function of the form f(x) =
ax+ b

cx+ d
, for constants a, b, c, and d, is called a linear,

fractional transformation. Show that f−1 is also a linear, fractional transformation, and
determine its form in terms of the constants a, b, c, and d.

3. For the two functions y = tanh(x) and y =
1

2
ln

(
1 + x

1− x

)
(a) Verify that neither of the compositions of the two functions can be easily sim-

plified to show algebraically that they are inverse functions.
(b) Nevertheless, visually verify that they are inverse functions on (−1, 1) by plotting

them together with the line y = x.
(c) Plot the composition of the two functions, in each of the two orders, on (−1, 1)

and compare the results with the graph of y = x. Is there now sufficient evidence
to believe that these are inverse functions?

4. Given the two functions f(x) = sin(x) and

g(x) = x+
x3

6
+

3x5

40
+

5x7

112
+

35x9

1152
+

63x11

2816
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plot their compositions f(g(x)) and g(f(x)) over the interval [−1, 1], and compare with
the graph of y = x. Is it reasonable to believe that f and g are inverse functions? Why
or why not?

5. Find the smallest value of the constant a for which the function f (x) = x4 − x2 has
an inverse on [a,∞) (it suffices to choose a so that f is strictly increasing on [a,∞)
– this can be determined graphically). Find an inverse g for f on this interval, and
demonstrate that f and g are inverse functions. Be specific as to the domain of the
function g that you find.

6. Use the Limit command to evaluate lim
x→0

sin( 1
x ). Explain what happens. Consider

sketching the graph of f(x) = sin( 1
x ) near zero to help you explain.

7. Repeat the previous problem for lim
x→0

x sin( 1
x ).

8. Evaluate lim
x→0

sin(ax)

bx
, where a and b are constants with b 6= 0.

9. Evaluate lim
x→0

√
x−
√
a

x− a
, where a is a positive constant.

10. Let r(x) =
x3 − x2

x2 + x− 7
.

(a) Verify that lim
x→∞

(r(x)− (x− 2)) = 0.

(b) This limit calculation suggests that the line y = x − 2 is an oblique asymptote
of the graph of the function r. Graph r and this line over the interval [−10, 10]
to demonstrate the asymptotic relationship.

11. Let f(x) =
√

4x2 + 3x+ 2.

(a) Compute lim
x→∞

(f(x)− 2x).

(b) This result of part (a) suggests that the graph of y = f(x) has an oblique
asymptote of the form y = ax + b, for suitable constants a and b. What are a
and b?

(c) Graph f and this line over the interval [−10, 10] to demonstrate the asymptotic
relationship.

12. Evaluate lim
x→∞

( 3
√
x3 + ax2 + bx+ c− x) in terms of the coefficients a, b, and c.

13. For x 6= 0, define f(x) =
ex

3 − 1

x sinx2
. What value should be assigned to f(0) so that f will

become continuous at x = 0?

14. Repeat the previous problem for f(x) =
x sinx3

cosx2 − ex4 .

15. Suppose f is the following function, where a and b are arbitrary constants.

f(x) =


x4 + x+ 1, x 6 −1

ax+ b, −1 < x < 2

cos πx2 + 5x, 2 6 x

(a) Find constants a and b so that the following function becomes continuous for
all real x. (Note: f will be continuous at −1 if f(−1) = limx→−1+ f(x), and
continuous at 2 if f(2) = limx→2− f(x).)
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(b) Enter f in Mathematica using a Piecewise definition and Plot the resulting
function. Is the function continuous for all real x?
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7 Calculus Applications (II)

This chapter continues discussion of Calculus-based concepts in Mathematica. We focus our
attention here on the concept of the derivative.

7.1 The Derivative

Recall that the derivative of a function f at a point x = a is given by the following
expression, whenever it exists.

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

When f ′(a) exists, the graph of y = f(x) has a tangent line at the point (a, f(a)) and the
slope of this tangent line is exactly f ′(a). If y = f(x) is a position function – a function
that gives the position of an object traveling linearly along a number line at time x – then
f ′(a) gives the instantaneous velocity of the object at time x = a.

7.1.1 Calculating the Derivative by Definition

To find the derivative of a function f at a point x = a using algebraic methods, you first
calculate the difference quotient

f(a+ h)− f(a)

h
for h 6= 0

and then evaluate the limit of this expression as h approaches 0.

In the case that the expression above simplifies nicely, evaluating the limit can be as easy
as evaluating the simplified expression with h = 0. We can certainly do this directly in
Mathematica, using its computer algebra capability.

To compute the derivative of the function f(x) = x3, we begin with

I Clear[f]

f[x ] := x^3

We form the difference quotient f(a+h)−f(a)
h , at an arbitrary point named a

I Clear[a,h]

(f[a+h]-f[a])/h

B
(a+ h)3 − a3

h

Only a little work is required to obtain a better-looking expression when h 6= 0.

I Simplify[%]

B 3a2 + 3ah+ h2

Lastly, the simplified difference quotient is given by a polynomial in the variable h and its
limit is computed by taking h to be 0 using a standard variable substitution rule (polynomials
are continuous throughout their domain)

I % /. {h→0}
B 3a2

We conclude that f ′(a) = 3a2, as it should be.

In the early days of calculus development, before rigorous notions of limits were available,
Fermat argued that you should compute the derivative exactly in this manner, by first
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computing the difference quotient, and then simply taking h to be 0 (after appropriate
simplification of the quotient). Mathematica had no trouble with that procedure as we saw
above.

On the other hand, relying on algebraic simplification will not carry very far beyond
polynomials and rational functions. Indeed, as we saw earlier, working algebraically with
the transcendental functions is particularly tricky.

For example, if f(x) = sin(x), the procedure above starts out with

I Clear[f]

f[x ] := Sin[x]

(f[a+h]-f[a])/h

B
sin(a+ h)− sin(a)

h

Working with this expression algebraically is difficult. We could try a few things

I TrigExpand[%]

B − sin(a)

h
+

sin(a) cos(h)

h
+

cos(a) sin(h)

h

I Together[%]

B
sin(a) cos(h) + cos(a) sin(h)− sin(a)

h

But it doesn’t look as if we’re getting close to any expression where you could simply take
h to be zero. Thus Fermat’s idea won’t work here.

Instead, we’ll need the full power of the Limit operator with the definition of derivative
to obtain f ′(a) = cos(a).

I Clear[a]

Limit[(f[a+h]-f[a])/h, h→0]

B cos(a)

7.1.2 f ′ Notation and the D Operator

The derivative computation is already implemented directly in Mathematica, so there’s
no need to explicitly carry out the limit definition.

If f is a function, Mathematica will understand the symbol f ′ as the derivative of f . You
enter the prime as the single quote character ('). For example

I Clear[f]

f[x ] := x^4

f'[x]

B 4x3

Higher-order derivatives follow with the usual notation

I f''[x]

B 12x2

I f'''[a]

B 24a

An alternative operator-based notation for the derivative is to use the D operator.
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I D[f[x],x] (* first derivative *)

B 4x3

To calculate higher-order derivatives, either of the following syntax formats can be used,
say, for the third derivative.

I D[f[x],x,x,x] (* third derivative *)

(* or *)

D[f[x],{x,3}]
B 24x

Technically, the operator D computes only the partial derivative of an expression with
respect to the stated variable. That is, it treats all symbols other than the given variable
to be constant with respect to the variable. For example

I Clear[a,b,c]

D[a*x^2+b*x+c,x] (* deriv of f(x) = ax2 + bx+ c *)

B 2ax+ b

The operator D recognizes the usual collection of derivative computation rules. For
example, the computation of derivatives of sums, products and compositions of functions
are known symbolically

I Clear[f,g]

D[f[x]+g[x],x]

B f ′(x) + g′(x)

I D[f(x]g[x],x]

B g(x)f ′(x) + f(x)g′(x)

I D[f[g[x]],x]

B f ′(g(x))g′(x)

Finally, Mathematica may not always produce exactly the derivative formula you’d expect.
An excellent example is the case of the “usual” derivative formula for the inverse secant
function, defined for |x| ≥ 1 (and where the value of sec−1(x) lies in [0, π2 ) ∪ (π2 , π])

d

dx
sec−1(x) =

1

|x|
√
x2 − 1

In this case, Mathematica computes

I D[ArcSec[x],x]

B
1√

1− 1
x2 x2

Of course, this is a proper result, since

1

x2
√

1− 1/x2
=

1

|x|2
√

1− 1/x2
=

1

|x|
√
x2(1− 1/x2)

=
1

|x|
√
x2 − 1

The output format chosen by Mathematica for the derivative cleverly avoids the use of the
absolute value function, which should help if you hope to make any algebraic use of the
result.
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7.1.3 Technical Note: Defining Functions with D

To define a function in Mathematica, we’ve recommended using the delayed assignment
mechanism (:=). However, if the right side of a function definition depends on D (or several
other Mathematica operators), we must adopt a slightly different route.

The simple example is when we might define a function g to be the derivative of a function
f that’s already in use in your Mathematica session. For demonstration, we’ll use f(x) = x2

I Clear[f,g]

f[x ]:= x^2

g[x ] := D[ f[x],x ] (* we THINK g(x) = 2x *)

Unfortunately, the function g is not properly defined

I g[2] (* we THINK this is 2(2) = 4 *)

B General::ivar: 2 is not a valid variable

What’s happened above is that the expression g[2] has been transformed into the expres-
sion D[f[2],2], or D[4,2] well before the derivative is computed. This last expression makes
no sense since, as the message states, the second argument of D must be a variable and not
a number such as 2.

The problem is easily (and perhaps best) solved by using the prime syntax instead of the
D operator. Indeed, we have

I Clear[f,g]

f[x ]:= x^2

g[x ] := f'[x] (* this REALLY IS g(x) = 2x *)

g[2]

B 4

Should there come a situation where the prime syntax cannot easily be used (e.g., the
function g above might be the derivative of some expression found after a sequence of
calculations), the alternative solution is to use immediate assignment to define g, forcing
the derivative computation to be made when the definition is executed.

Thus the following sequence does not work

I Clear[g]

g[x ] := D[x^3+5x,x] (* NOT! *)

but the following sequence does work, because it uses the immediate assignment operator
(=)

I Clear[g]

g[x ] = D[x^3+5x,x] (* g(x) IS 3x2 + 5 *)

B 3x2 + 5

7.1.4 Derivatives and Removable Discontinuities

Finding the derivative of a function f at a point x = a where f has a removable discon-
tinuity usually requires a direct application of the definition of the derivative.

For example, given the function f(x) =
ex − 1

x
, we’re aware that the function as defined is

discontinuous at the origin (the formula is not defined for x = 0). However, the discontinuity
is removable as you can see from its graph

I Clear[f]
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f[x ] := (Exp[x]-1)/x

Plot[f[x], {x,-1,1}]

-1.0 -0.5 0.5 1.0

1.0

1.2

1.4

1.6

The graph agrees with the computation that limx→0
ex − 1

x
= 1, and thus the definition

of f can be extended at the origin by setting f(0) to be this limit. In Mathematica, we’ll
thus set

I f[0] = Limit[f[x], x→0]

B 1

To understand the extended Mathematica definition of f , we examine

I ?f

B Global‘f
f[0]=1
f[x ]:=(Exp[x]-1)/x

With f now properly defined at the origin to be a continuous function, we can determine
that it is, in fact, differentiable at the origin with f ′(0) = 1

2 by executing the definition of
the derivative directly.

I Clear[h]

Limit[(f[0+h]-f[0])/h, h→0]

B
1

2

7.2 Tangent Lines

Mathematica easily plots tangent lines to the graphs of functions. Consider first the graph
of f(x) = x− x2. The graph of f is a parabola that opens downward.

I Clear[f]

f[x ] := x-x^2

Plot[f[x],{x,-1,2}]

-1.0 -0.5 0.5 1.0 1.5 2.0

-2.0

-1.5

-1.0

-0.5
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At any point (a, f(a)), the tangent line at that point on the graph has equation y =
f(a) + f ′(a)(x − a). This line can be specified directly in the Plot operator at any point
x = a. To see the graph above together with its tangent line at a = 1

4 , we use

I a = 1/4;

Plot[{f[x],f[a]+f'[a](x-a)},{x,-1,2}]

-1.0 -0.5 0.5 1.0 1.5 2.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

7.2.1 Special Feature: Manipulate and Symbolic Parameters

Students are often confused when we use symbolic terms in expressions and other inputs.
The sequence above provides a good example. Indeed, we used a general formula to describe
the tangent line’s equation in the plot, but to make it effective, the symbol a had to have a
value before executing the Plot.

Suppose we attempted the same sequence, but without having assigned a value to the
variable a

I Clear[f,a]

f[x ] := x-x^2

Plot[{f[x],f[a]+f'[a](x-a)},{x,-1,2}]

-1.0 -0.5 0.5 1.0 1.5 2.0

-2.0

-1.5

-1.0

-0.5

Only the graph of f appeared above and none of the tangent line with equation y =
f(a) + f ′(a)(x − a) has been drawn, and for an obvious reason. Since a has no numeric
value, no numeric value can be found for any y-coordinate f(a) + f ′(a)(x − a), and so no
points can be plotted for the line.

However, suppose we were interested in generally examining the behavior of the tangent
line at any value of a, say, as a varies over the interval −1 ≤ a ≤ 2?

One option is to draw lots of graphs using different values of a. That’s possible, but
tedious (one graph for each value of a) and does not have the same comparative effect as
what we now demonstrate.

The Manipulate operator is a powerful operator whose output allows you to interactively
display a wide range of plots depending on a symbolic parameter such as a. This is exactly
what we need right here, right now.
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We begin with these definitions

I Clear[f,a]

f[x ] := x-x^2

and instead of attempting to “plot” the graph of f together with its symbolic tangent line

I Plot[{f[x],f[a]+f'[a](x-a)},{x,-1,2}]
we instead hand over this entire Plot command to Manipulate, specifying that we’re
interested in a range of the symbolic parameter a from, say, −1 ≤ a ≤ 2.

I Manipulate[

Plot[{f[x],f[a]+f'[a](x-a)},{x,-1,2}],
{a,-1,2} ]

a

-1.0 -0.5 0.5 1.0 1.5 2.0

-2

2

4

6

You’ll be presented with a small window in which you are originally looking at the graph
of f and the tangent line at a = −1. A slider appears at the top of the window and, by
dragging it to the right, the position of the tangent line will vary in real time over the
interval −1 ≤ a ≤ 2.

Further, if you click on the little + sign that appears at the right end of the slider, you’ll
see standard VCR-like controls allowing you to “see the movie,” and there will also be a
box where you can enter the value of a directly. Neat!

a

1.39378

!1.0 !0.5 0.5 1.0 1.5 2.0

!3

!2

!1

1

2

3

Manipulate is a very capable graphics operator. This use – literally manipulating a
complete Plot command that depends on a symbolic parameter – only scratches the surface
of its possibilities. More will be seen later. But three comments should be added here to
help you work with Manipulate.

First, you’ll notice that the graphic will “jump around” a little as you drag the slider
to control the value of a. The reason for this is that the Plot output uses a different plot
range for each value of a.
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You can eliminate the “jumping around” problem by specifying a common PlotRange
directly in the Plot command. Restricting the graphic to the range of −3 ≤ y ≤ 3 seems
to work pretty well (although we’ll not show the result).

I Manipulate[

Plot[{f[x],f[a]+f'[a](x-a)},
{x,-1,2}, PlotRange→{-3,3}],

{a,-1,2} ]

Second, pay special attention to syntax. As used above, Manipulate has two arguments,
a complete Plot command that starts with the characters Plot[ and ends with the character
], and a range specification for the symbolic parameter. These are separated by a comma.

Notice that we took the time above to enter the complete Manipulate expression over
multiple lines so that we can more easily identify these two parameters. This helps make it
more clear as to what elements of the input belong within the Plot command.

Finally, if you’re having trouble using Manipulate, be sure to test the Plot command on
its own (with some fixed value of the parameter) to see that it works correctly. Manipulate
won’t do the right thing if the Plot command doesn’t work on its own!

7.2.2 Technical Note. D and Plot

Whenever possible, we recommend that you use the f ′ syntax for a derivative if it is used
in conjunction with Plot. Use of D with Plot unfortunately requires some care. This is due
more an oddity of the Plot operator than anything else, and we’ll now take the opportunity
to discuss the issue briefly.

It would seem that the following sequence should make sense, but it does not. Only error
messages and an empty graph are produced.

I f[x ] := x^2

Plot[ D[f[x],x], {x,-2,2} ] (* plots y = 2x ? *)

The Plot operator treats its first argument (the one that defines the function or functions
to be plotted) much differently than do most Mathematica operators. To execute the Plot,
Mathematica begins by substituting several x-values from the interval −2 ≤ x ≤ 2 into
the expression D[f[x],x] and then evaluating the expression. This means that Mathematica
attempts to evaluate expressions such as D[f[-2],-2], D[f[-1],-1], D[f[0],0], D[f[1],1], and
D[f[2],2].

Mathematica has simply “plugged in” values into the expression D[f[x],x] before comput-
ing the derivative and tried to make sense out of it. But none of these expressions makes any
sense! (This situation is not unrelated to the syntax issues that were noted in section 7.1.3.)

In order to force Mathematica to evaluate the derivative before Plot gets hold of it, you
should use one of the following with the Evaluate operator

I Plot[ Evaluate[D[f[x],x]], {x,-2,2} ]

(* or *)

Plot[ D[f[x],x]//Evaluate, {x,-2,2} ]

The input above is then forced to be treated as the equivalent of the following, intended
input and you’ll get a meaningful plot

I Plot[ 2x, {x,-2,2} ]
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-1
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3

7.3 Optimization

Many useful applications of differential Calculus involve computation of the extreme (max-
imum and minimum) values of a function. The following is usually presented as the basis
for such optimizations:

Theorem. Let f be continuous on [a, b]. Then f will attain both a maximum and minimum
value on [a, b]. Further, if f attains an extreme value at some c in (a, b), then either f is
not differentiable at c, or else f ′(c) = 0.

Consequently, the standard Calculus operation of maximizing or minimizing a continuous
function f over a closed interval [a, b] reduces to a simple three-step method:

(a) locate the critical numbers of f on [a, b] – i.e., those points where f ′ is undefined or
zero;

(b) evaluate f at each of these critical numbers; and
(c) evaluate f at the endpoints a and b.

Necessarily, the extreme values of f will be found from among the values identified in steps
(b) and (c).

Example. Find the extreme values of f(x) = x2 − x on the interval [−1, 3].

Solution. First we define the function, and locate its critical numbers (this function is
differentiable everywhere):

I Clear[f];

f[x ] := x^2 - x

solution = Solve[f'[x]==0,x]

B {{x→ 1
2}}

The only critical number of f occurs at x = 1/2. We must then compare the value of f
at this critical number, with the values of f at the endpoints x = −1 and x = 3:

I f[x] /. solution

B {x→ − 1
4}

I f[-1]

B 2

I f[3]

B 6

It follows that f attains a maximum value of 6, at x = 3; and a minimum value of −1/4,
at x = 1/2.

If we hadn’t specified the interval [−1, 3], and were we only interested in the relative
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extrema of f , then f has only the one critical number at 1/2. Since f is twice differentiable,
we could determine that f has a relative minimum at 1/2 by using the Second Derivative
Test. Indeed, f has a relative minimum at 1/2 since f ′′(1/2) > 0.

I f''[1/2]

B 2

In general, the processes above are important, but the computer algebra steps demon-
strated above will probably fail. Computing the critical numbers of the function f relies on
the use of Solve, so only a limited collection of functions f will be amenable to the process.
More robust, numerical techniques for optimization will be addressed later in the text.

7.4 Local Linearity and Differentiability

A key concept for a function f that is differentiable at a point x = a is local linearity at
the point x = a. Visually, this means that the graph of f and its tangent line at x = a are,
essentially, indistinguishable when viewed near x = a. We demonstrate.

Consider the graph of y = f(x) = sin(x) near the point a = 1, together with its tangent
line.

I Clear[f]

f[x ] := Sin[x]

a = 1;

Plot[{f[x],f[a]+f'[a](x-a)},{x,0,2}]

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

If we zoom in on the graph near the point (a, f(a)) = (1, sin(1)) by shrinking the x-interval
around a = 1, we see that the graph and the tangent line are quite close

I a = 1; (* just a reminder that a = 1 here! *)

Plot[{f[x],f[a]+f'[a](x-a)},{x,0.9,1.1}]

0.95 1.00 1.05 1.10

0.82

0.84

0.86

0.88

We’ll shrink once more, to the interval a ± 0.01 = 1 ± 0.01. But to more easily manage
the syntax while shrinking the interval around a = 1, we introduce the following sequence,
where the variable h controls the distance to each side of the point x = a in the graph.
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I a = 1;

h = 0.01; (* we graph over a− h ≤ x ≤ a+ h *)

Plot[{f[x],f[a]+f'[a](x-a)},{x,a-h,a+h}]

0.995 1.000 1.005 1.010

0.838

0.840

0.842

0.844

0.846

So indeed, the graph of f(x) = sin(x) is essentially a line near a = 1 when the view is
localized.

7.4.1 A Numerical Consequence of Local Linearity

Given the sequence above, we can conclude that when f is differentiable at a point x = a,
the slope of the tangent line at x = a and the slope of what appears to be the linear graph
of f over an interval a− h ≤ x ≤ a+ h should be about the same.

Numerically, this means that the value of f ′(a) is approximately given by the average
rate of change of f over the interval a− h ≤ x ≤ a+ h, which is just

f(a+ h)− f(a− h)

(a+ h)− (a− h)
=
f(a+ h)− f(a− h)

2h

For the sine function of the discussion above, we compute the average rate of change
shown in the last graph above (where f(x) = sin(x), a = 1 and h = 0.01).

I (f[a+h]-f[a-h])/(2h)

B 0.540293

In comparison, we see that the exact value of f ′(a) = f ′(1) is

I f'[a] //N

B 0.540302

The values above differ by very little (by no more than 0.00001) and, as a general con-
clusion, a numerical approximation for the the derivative at a point x = a can be given
as

f ′(a) ≈ f(a+ h)− f(a− h)

2h
when h is close to 0

Most graphing calculators you’ve used provide a numerical derivative function that em-
ploys exactly the estimate above, usually with h = 0.001 by default. For example, in
Mathematica we estimate the derivative of the sine function at a = 1 with

I Clear[f]

f[x ] := Sin[x]

a = 1;

h = 1/1000; (* an exact 0.001 *)

estimate = (f[a+h]-f[a-h])/(2h);

N[estimate,10]
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B 0.5403022158

On the TI-83 and TI-84 calculator, you’ll find this to be exactly the output obtained from
the command nDeriv(sin(X),X,1).

7.5 Implicit Differentiation

Recall that curves in the plane are sometimes defined only by an equation. Working with
a curve as the graph of a function is only possible if the curve passes the vertical line test ;
and even if it does pass the test, algebraically finding a formula for the function may not be
either easy or even possible.

Thus consider the question of finding the slope of the line tangent to the curve x2 +y2 = 4
at the point (−1,

√
3), as shown below.

-2 -1 1 2

-2

-1

1

2

A standard Calculus technique called implicit differentiation treats (say) the y in the
equation x2 + y2 = 4 as function of the variable x, and treats the point (−1,

√
3) as a point

on its graph.

We may not know a formula for f (well, we really can find a formula, but assume for the
moment that we cannot), but we have an equation that f satisfies, namely

x2 + f(x)2 = 4

The calculus now proceeds to differentiate both sides of the equation and solve the re-
sulting equation for f ′(x). Using the Leibnitz notation, we have

x2 + y2 = 4

2x+ 2y · dy
dx

= 0

dy

dx
= −x

y

The tangent slope at (−1,
√

3) is then

dy

dx

∣∣∣∣
(−1,
√

3)

= − (−1)√
3

=
1√
3

The total differential operator Dt is used to carry out this computation in Mathematica.
After specifying the variable of the equation to be x, Dt treats all remaining symbols in the
equation as functions of x (of course, constants such as the 4 have zero derivative)

I Clear[x, y]

Dt[x^2+y^2==4, x]
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B 2y
dy

dx
+ 2x = 0

The result is an equation involving the derivative
dy

dx
, written as Dt[y,x] in Mathematica,

and we can solve for it explicitly (notice here how the Solve operator can be used to solve
equations for a complete expression such as Dt[y,x]):

I solution = Solve[%, Dt[y,x]]

B

{{
dy

dx
→ −x

y

}}
To isolate the expression −x

y
so that we can work with it, we use a variation on the now

familiar dummy variable trick, but with the expression Dt[y,x]

I expression = Dt[y,x] /. solution[[1]]

B −x
y

Finally we can evaluate this expression at (−1,
√

3) to compute the tangent slope
dy

dx

∣∣∣∣
(−1,
√

3)

I expression /. {x→-1,y→Sqrt[3]}

B
1√
3

Calculus texts will demonstrate the method of implicit differentiation in some detail, as
well as discuss the existence of implicit functions and the validity of the technique. Certainly,
as we see above, the mechanics of the method are easily replicated in Mathematica.

7.6 Exercises

1. Compute the derivatives of each of the functions in the following classes of functions,
and compare the results with the standard entries in a Calculus text:

(a) trigonometric
(b) inverse trigonometric
(c) hyperbolic
(d) inverse hyperbolic

2. Verify symbolically that D follows the standard quotient rule for derivatives.

3. If f and g are differentiable functions, the product rule states that

d

dx
(f(x)g(x)) = f(x)g′(x) + f(x)g′(x)

Continuing to the second order, the product rule expands as

d2

dx2
(f(x)g(x)) = f(x)g′′(x) + 2f ′(x)g′(x)f ′′(x)g(x)

There’s a familiar pattern at work here for derivatives of products that looks much like
the pattern seen with binomial expansions.

Use Mathematica to determine the exact form of the pattern by checking D[f[x]g[x],{x,n}],
for a few values of n. What do you observe? Have you discovered Leibnitz’ Rule?
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4. For each of the following, zoom in on the graph around the indicated point x = a until
the graph appears to be a line, then compare the value of f ′(a) with the average value
of f over the x-interval in the graph. Comment on how close the two values are (e.g.,
to 3 decimal places past the decimal point, or perhaps more?)

(a) f(x) = (x− 4)2(x− 2)2(x+ 1)2 at a = 1 and a = 3

(b) f(x) =
sin(x)

1 + x2
at a = 0.5 and a = 3

(c) f(x) = tan−1(x) at a = 1 and a = 2

5. Explain what the problem is with carrying out a local linearity investigation of the
function f(x) = |x| at the point x = 0. Use Mathematica to support your explanation.

6. Each of the following functions has a removable discontinuity at x = 0, and when
suitably defined at x = 0, is differentiable there. For each,

• use the Limit operator to determine how f(0) should be defined to remove the
discontinuity;

• extend the definition of f in Mathematica to have this value;

• use both local linearity (in the graph) and the definition of the derivative to find
the value of f ′(0).

Please be sure that both numerical estimates you find for f ′(0) (one from the graph,
one from the Limit computation) agree to 3 or more decimal places past the decimal
point.

(a) f(x) = x2 sin( 1
x )

(b) f(x) =
ln(x+ 1)

x

(c) f(x) =
ex − 1− x

x2

(d) f(x) =
ex

3 − 1

x sinx2

7. Try repeating the previous problem for f(x) =
x sinx3

cosx2 − ex4 .

8. For the curve x2 − 3x3y4 + 5y6 = 5, find:

(a) the equation of the line tangent to the curve at the point (0, 1).

(b) the value of the second derivative
d2y

dx2

∣∣∣∣
(0,1)

(differentiate implicitly a second

time, and substitute the value of the first derivative obtained in part (a)).

9. Repeat the previous problem for the curve

x2 sin(xy) + (1 + y)3 tan−1(x+ y) =
π

4

but considered at the point (1, 0).

10. Suppose y = p(x) = ax2 + bx+ c is the parabola that passes through the points (2, 7),
(6, 3) and (10, 14). Determine the coordinates of the vertex of the parabola. (Suggestion:
p′(x) = 0 at the vertex.



Mathematica Notes c© 2009–2013, G. E. Keough (August 5, 2013 ) Page 103

8 Integral Calculus

In this Chapter, we discuss – in very general terms – how Mathematica handles integration.

8.1 The Integrate command and Antiderivatives

The Integrate command provides symbolic antidifferentiation capabilities in Mathemat-
ica. For example, mathematically we would write:∫

x2 − x3 + cos(x)− ln(x) dx =
x3

3
− x4

4
+ sin(x)− (x ln(x)− x) + C

In Mathematica, we would make this computation as follows:

I Clear[f]

f[x ]:= x^2 - x^3 + Cos[x] - Log[x]

answer = Integrate[f[x],x]

B −x
4

4
+
x3

3
+ x− x log(x) + sin(x)

Note that the Integrate command has two arguments – the expression to integrate, and
the variable of integration. Note also that Mathematica’s log function represents the natural
logarithm, and that the terms of the antiderivative generated may not necessarily appear
in the anticipated order. Finally, the result above is only one of many antiderivatives; the
usual arbitrary constant of integration is omitted from the result of Integrate.

We can check that the antiderivative above is correct by computing its derivative:

I D[answer,x]

B −x3 + x2 − log(x) + cos(x)

Note. You can (and may prefer to) use the Basic Commands integration template from
the Basic Math Assistant palette to enter an integration expression. You’d first be given
an integral template, then you can enter the integrand, press the Tab key, and enter the
variable of integration. The sequence would look like this:

→ →

However, while the expression appears to look right, when you evaluate the expression you’ll
receive an error message! Unlike mathematical syntax in which the integral sign precedes
the integrand and the dx marks the end of the integrand, the order of precedence in the
Mathematica expression above is different, with only the xˆ2 term recognized as belonging
to the integral (and no dx term following). For precedence reason, the proper entry should
include parentheses.

The Integrate command is, of course, essentially the inverse of the (partial) differential
command D. In particular, this means that Integrate assumes all symbols other than the
specified variable of integration are constant with respect to the variable, as in the following
expression, where a is treated as a constant:

I Clear[a]

Integrate[ a*x^2, x ]
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B
ax3

3

Integrate usually provides antiderivatives without regard to special cases. You’re ex-
pected to recognize when special cases are needed, as in:

I Clear[n]

Integrate[x^n,x]

B
xn+1

n+ 1

For the special case when n = −1, you must explicitly evaluate:

I Integrate[x^(-1),x]

B log(x)

8.1.1 How Mathematica Integrates

The techniques implemented by Mathematica in finding symbolic antiderivatives are based
on the ability to decompose the integrand into a specific combination of elementary func-
tions, and then to integrate the result using integral table lookups, (trigonometric) identities
and highly specialized logic. The following examples show why the way that you’ve been
trained to see an integral may not be exactly the way that Mathematica sees it.

Example. To evaluate

∫
dx

4 + 9x2
by hand, you would typically use the substitution x =

(2/3) tan(u). In this case, dx = (2/3) sec2(u)du, so we write out∫
dx

4 + 9x2
=

∫
(2/3) sec2(u)du

4 + 9 ((2/3) tan(u))
2 =

2

3

(
1

4

)∫
sec2(u)du

1 + tan2(u)

=
1

6

∫
du =

1

6
u+ C =

1

6
tan−1

(
3x

2

)
+ C

(The last equality was generated from the original substitution by writing u in terms of x
as u = tan−1(3x/2).)

More generally, following the same substitution technique, we see that for any constants
a and b, ∫

dx

a2 + b2x2
=

1

ab
tan−1

(
bx

a

)
+ C

and this antiderivative formula appears in most integral tables. Mathematica has access to
a fairly large integral table, and uses exactly this entry to evaluate the integral:

I Integrate[1/(4+9x^2),x]

B
1

6
tan−1

(
3x

2

)
In this situation, Mathematica has looked up the answer directly, and not done the sub-

stitution that you might have carried out by hand. Indeed, Mathematica already knows the
table formula in general terms:

I Integrate[1/(a^2 + b^2 9x^2),x]

B
tan−1

(
bx

a

)
ab
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Forms given in integral tables may not always be so easily matched, as in the case of the
following example where a student would have to complete a square.

Example. To evaluate

∫
dx√

4x2 − 12x+ 15
, we complete the square under the radical so

that ∫
dx√

4x2 − 12x+ 15
=

∫
dx√

(2x− 3)2 + 6

and then we perform a simple substitution of u = 2x− 3 to obtain∫
dx√

(2x− 3)2 + 6
=

1

2

∫
du√

u2 + (
√

6)2

This form matches the standard integral table entry∫
dx√
x2 + a2

= ln |x+
√
x2 + a2|+ C

and thus is easily resolved by writing

1

2

∫
du√

u2 + (
√

6)2

=
1

2
ln

∣∣∣∣u+

√
u2 + (

√
6)2

∣∣∣∣+ C

With a final substitution for the variable u, we can write:∫
dx√

4x2 − 12x+ 15
=

1

2
ln

∣∣∣∣(2x− 3) +

√
(
√

6)2 + (2x− 3)2

∣∣∣∣+ C

=
1

2
ln
∣∣∣(2x− 3) +

√
4x2 − 12x+ 15

∣∣∣+ C

How Mathematica evaluates this particular integral will be discussed shortly. However, it’s
reasonable to assume that either the mechanics of completing a square will be performed
easily by Mathematica as above; or (better) that a new integration table entry could be
formed as a result of the general case of completing the square in an integral such as∫

dx√
ax2 + bx+ c

.

Example. To evaluate

∫
sin5 x dx by hand, you can twice replace sin2 x by 1 − cos2 x,

expand the integrand and integrate the result. Alternatively, most students appeal to the
reduction formula∫

sinn x dx = − 1

n
sinn−1 x cosx+

n− 1

n

∫
sinn−2 x dx

which is valid for integers n ≥ 2. Repeated application generates the sequence:

∫
sin5 x dx = −1

5
sin4 x cosx+

4

5

∫
sin3 x dx

= −1

5
sin4 x cosx+

4

5

(
−1

3
sin2 x cosx+

2

3

∫
sinx dx

)
= −1

5
sin4 x cosx− 4

15
sin2 x cosx+

8

15

∫
sinx dx
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= −1

5
sin4 x cosx− 4

15
sin2 x cosx− 8

15
cosx+ C

Mathematica, however, does not actually use the reduction formula or make any substi-
tutions using trigonometric identities:

I Integrate[Sin[x]^5,x]

B −5 cos(x)

8
+

5

48
cos(3x)− 1

80
cos(5x)

However, this is indeed a proper antiderivative:

I D[%,x]//Simplify

B sin5(x)

What’s happened is that Mathematica rewrote the integrand before integrating, generat-
ing integrals that are quite simple to do. In fact, this is what was integrated

I TrigReduce[Sin[x]^5]

B 1
16 (10 sin(x)− 5 sin(3x) + sin(5x))

8.2 When Things Go Wrong with Integration

Blindly using Integrate can lead to cases either where the command simply fails, or pro-
duces a result that is unfamiliar or unexpected. This section notes a few of these situations.

8.2.1 Unfriendly or Unfamiliar Results

When Mathematica computes an antiderivative, there’s a high probability of receiving
extremely unfriendly solutions. Integral tables are often confounded by the presence of the
inverse trigonometric or inverse hyperbolic functions.

Example. Mathematica does not go through the process of completing squares in the

same way you do. While you might guess that

∫
dx√

4x2 − 12x+ 15
will be recognized as∫

dx√
(2x− 3)2 + 6

, and matched against the proper table entry from that point (as was done

earlier) to produce 1
2 ln

∣∣2x− 3 +
√

4x2 − 12x+ 15
∣∣ + C, Mathematica produces a perhaps

unfriendly result:

I answer = Integrate[1/Sqrt[4x^2-12x+15],x]

B 1
2 sinh−1

(
2x− 3√

6

)
This is a proper antiderivative, as can be checked by evaluating:

I D[answer,x]//Simplify

B
1√

4x2 − 12x+ 15

Indeed, the inverse hyperbolic sine function satisfies a simple identity with the logarithm
function: sinh−1(x) = ln(x+

√
x2 + 1). The result given above is simply

1

2
ln
∣∣∣2x− 3 +

√
4x2 − 12x+ 15

∣∣∣ =
1

2
ln

∣∣∣∣∣∣
(

2x− 3√
6

)
+

√(
2x− 3√

6

)2

+ 1

∣∣∣∣∣∣+
1

2
ln
√

6
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=
1

2
sinh−1

(
2x− 3√

6

)
+

1

2
ln
√

6

So the answer is correct as it stands, up to a constant of integration, despite its appearance
involving a function often not studied in much detail in a Calculus course.

In fact, this particular integral is most likely matched directly against the general formula∫
dx√

ax2 + bx+ c
=

1√
a

ln(2ax+ b+ 2
√
a
√
ax2 + bx+ c) + C

which is the result if you formally carry out completion of the square. For the given coeffi-
cients, the result is then simplified using the inverse hyperbolic sine identity above. Indeed:

I Integrate[1/Sqrt[a*x^2+b*x+c],x]

B
log
(
2
√
a
√
ax2 + bx+ c+ 2ax+ b

)
√
a

Example. A similar situation arises in evaluating

∫
dx

x
√
ax+ b

, for which most standard

Calculus texts provide the table entry:∫
dx

x
√
ax+ b

=
1√
b

ln

∣∣∣∣∣
√
ax+ b−

√
b

√
ax+ b+

√
b

∣∣∣∣∣+ C when b > 0

I result = Integrate[1/(x Sqrt[a*x + b]),x]

B −
2 tanh−1

(√
ax+ b√
b

)
√
b

Once again, Mathematica has used a simple relationship between the (real-valued) inverse
hyperbolic tangent and the natural logarithm function:

tanh−1 x =
1

2
ln

1 + x

1− x
for− 1 < x < 1

(we’ve seen this identity several times before!). So the answer above can be made massaged
a little with the following statements that replace the inverse hyperbolic tangent function

with the function f(x) =
1

2
ln

1 + x

1− x
:

I Clear[f]

f[x ] := 1/2 Log[(1+x)/(1-x)]

result /. ArcTanh→f // Simplify

B −
log

(√
ax+ b+

√
b√

b−
√
ax+ b

)
√
b

You’ll be more comfortable with this answer, which is almost exactly the standard table
lookup result you’d expect.

Of course, if b < 0, Mathematica’s original answer using the inverse hyperbolic tangent
function is still correct when interpreted with a complex-valued square root. It reduces to

2√
−b

tan−1

√
ax+ b

−b
+C in this case, and relies on complex-valued identities involving the

inverse tangent and inverse hyperbolic tangent. This will not be shown here.
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8.2.2 Imaginary Results

Complications may further be introduced because Mathematica uses relationships among
the trigonometric and exponential functions in the sense of complex numbers, variables, and
functions. Consequently, computing a real integral may actually generate a complex-valued

function (or so it might seem). A typical example comes in the case of

∫
dx

sinx− cosx
:

I Clear[f]

f[x ]:=1/(Sin[x]-Cos[x])

answer = Integrate[f[x],x]

B (−1 + i) 4
√
−1 tanh−1

 tan
(x

2

)
+ 1

√
2


Note the presence of the complex number i in the result. More importantly, even if the

result is meaningful to you, computing its derivative and manipulating it to reproduce the
integrand is a non-trivial task.

Mathematically, the trigonometric functions and exponential functions are intimately
related as complex-valued functions, and Mathematica often takes advantage of such re-
lationships to produce complex-valued solutions (which may, ultimately, yield real values
anyway). Two such identities that may be familiar to students of Complex Variables are:
eiθ = cos θ + i sin θ, and tan−1(ix) = i tanh−1(x).

If you’re familiar with complex variables, you’ll recognize that one reason Mathematica
cannot simplify the result to a real-valued expression is the presence of the term (−1)1/4.
As a complex-valued expression, this could represent any of the four fourth-roots of −1.

The principal fourth-root will be
1 + i√

2
, and Mathematica can be forced to substitute this

as the value of (−1)1/4 with (assuming the expression above is the most recent evaluation):

I answer /. (-1)^(1/4)→(1+I)/Sqrt[2]

B −
√

2 tanh−1

 tan
(x

2

)
+ 1

√
2


In other words, once we say how to simplify (−1)1/4, Mathematica is able to proceed with

other simplifications in which the complex constants are algebraically absorbed.

8.2.3 Special Functions in Integration

In general, Mathematica can find antiderivatives for polynomials, many rational functions,
trigonometric functions, and the like. Some integrations may require extra effort, as seen
above. However, Mathematica can’t find every antiderivative, simply because not every
integrable function has an easily written antiderivative.

A standard example of such a case is
∫
e−x

2

dx, for which there is no closed-form an-
tiderivative:

I Clear[f]

f[x ] := Exp[-x^2]

Integrate[f[x],x]

B 1
2

√
π erf(x)

This answer is returned in terms of the special function erf, whose value at x is defined
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to be the definite integral

erf(x) =
2√
π

∫ x

0

e−t
2

dt

Indeed, except for the particular choice of constant, this solution is nothing other than the
original integral, written as a function of its upper limit of integration. The (First) Funda-
mental Theorem of Calculus guarantees that its derivative is exactly the correct multiple of
f . That is,

d

dx

(
2√
π

∫ x

0

e−t
2

dt

)
=

2√
π
e−x

2

The function erf is routinely recognized as the integral of the Gaussian distribution in
probability theory having mean 0 and standard deviation 2, and is often called the error
function. Its values are well known, and it appears with regularity in both probability and
statistics.

A second example is the case of

∫
sinx

x
dx, which is again an integral for which no

closed-form antiderivative exists. The First Fundamental Theorem of Calculus certainly
guarantees that

d

dx

∫ x

0

sin t

t
dt =

sinx

x

and Mathematica reports as much:

I Integrate[Sin[x]/x,x]

B Si(x)

A quick search through Mathematica’s help system reveals that Si represents the SinIn-
tegral command (if written in TraditionalForm), where the value of SinIntegral[x] is
exactly the same as “Integrate[Sin[t]/t, {t,0,x}].” In other words,

Si(x) =

∫ x

0

sin t

t
dt

This particular integral arises often in applications, and it is for that reason that Mathe-
matica knows about it.

Finally, other integrals will be reported in terms of special functions such as erf and Si.
For example, the following calculation can be carried out using integration by parts, but
produces the sine integral:∫

cosx

x2
dx =

∫
cosx

(
dx

x2

)
= −cosx

x
−
∫

sinx

x
dx

I Integrate[Cos[x]/x^2,x]

B −Si(x)− cos(x)

x

8.3 Integrate & Definite Integrals

8.3.1 Using the Fundamental Theorem

Of central importance in the study of integration is the (Second) Fundamental Theorem
of Calculus:
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Theorem. Let f be continuous on [a, b], and suppose that there exists a continuous function
F on [a, b] such that F ′(x) = f(x), for x ∈ (a, b). Then∫ b

a

f(x) dx = F (x)|x=b
x=a = F (b)− F (a)

A typical use of the Fundamental Theorem would be to compute the area under the curve
y = x2, over the interval [1, 2] to be∫ 2

1

x2 dx =
x3

3

∣∣∣∣x=2

x=1

=
23

3
− 13

3
=

7

3

Mathematica’s Integrate command carries out the calculation of definite integrals via the
Fundamental Theorem whenever its second parameter is specified in the form of an iterator
to denote an interval over which a definite integration is to be performed. In syntax,∫ b
a
f(x) dx is written as Integrate[f[x],{x,a,b}] in Mathematica. The integral above would

be computed simply as:

I Integrate[x^2,{x,1,2}]

B
7

3

Students sometimes forget to check whether a given integrand is actually integrable over
a given interval and obtain erroneous results such as∫ 1

−1

1

x2
dx =

−1

x

∣∣∣∣x=1

x=−1

= −2 !!!

In purely symbolic terms, the result is questionable, since the integrand appears to always
positive; in fact, the answer is meaningless, since the integrand is neither continuous nor
even bounded near 0. Fortunately, Mathematica recognizes such a situation:

I Integrate[1/x^2,{x,-1,1}]
B Integrate::idiv: Integral does not converge. Indeterminate

8.3.2 Tables of Definite Integrals

Integral tables usually have a collection of values of many definite integrals. In some
cases, the values are listed only for convenience, since certain integrals appear frequently. A
typical entry of this form might be:∫ π/2

0

sinn(x) dx =

∫ π/2

0

cosn(x) dx =
2× 4× . . .× (n− 1)

3× 5× . . .× n
, n an odd integer, n ≥ 3

Certainly, such integrals could be evaluated directly using reduction formulae, but it’s
reasonable to believe that Mathematica recognizes definite integrals such as the one above
and returns a result without actually performing the integration.

Other definite integrals appear in tables because their value is known, despite the fact
that their antiderivative may not be known. An example of this form is:∫ ∞

0

e−x
2

dx =

√
π

2

Mathematica produces the correct result, since the special function erf on which the
integral is based is well known, as we discussed earlier.
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I Integrate[Exp[-x^2],{x,0,Infinity}]

B

√
π

2

Similarly, some definite integrals involving SinIntegral are known, since well-known tech-
niques learned in a Complex Variables course can be applied to transform them into integrals
in the complex plane. For example

I Integrate[Sin[a*x]^2/x^2,{x,0,Infinity}]

B
π |a|

2

8.4 Numerical Integration

8.4.1 N and Integrate

The results of definite integrals obtained from Integrate[f[x],{x,a,b}] will, of course, be
symbolic. If the antidifferentiation can be performed or otherwise recognized according to
its form, then a numerical approximation for the value of the integral can be found simply
by applying N to the result:

I Integrate[x^2,{x,1,2}] // N

B 2.33333

Here, the integral

∫ 2

1

x2 dx is first evaluated symbolically as
x3

3

∣∣∣∣2
1

=
8

3
− 1

3
=

7

3
, and a

numerical approximation of the result is given.

8.4.2 NIntegrate

Applying N to the result of Integrate can be rather time-consuming, since a symbolic
antidifferentiation is attempted first. Preferably, the NIntegrate command should be used
whenever numerical integration results will be acceptable.

In syntax, NIntegrate[f[x],{x,a,b}] causes a numerical approximation to be generated

for the integral

∫ b

a

f(x) dx. Numerical techniques do not perform any symbolic integration

and are generally returned quickly (in the same way that NSolve outperforms Solve).

Methods by which NIntegrate produces its results will be studied in a course on Numer-
ical Analysis. Reasonably accurate methods for numeric integration that you have probably
studied already include the Trapezoidal, Midpoint and Simpson’s Rules. Mathematica uses
much more sophisticated methods allowing a very high degree of accuracy (which can be
user-controlled using appropriate options with NIntegrate).

Example. Consider approximating the area bounded by the curves p(x) = x5 − 20x3 and
q(x) = 30− x5. A graph of these curves near the origin gives:

I Clear[p,q]

p[x ] := x^5 - 20 x^3

q[x ] := 30 - x^5

Plot[{p[x],q[x]},{x,-4,4}]
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-4 -2 2 4

-1000

-500

500

1000

These curves intersect in (most likely only) three places, and numerical approximations
of the x-coordinates of the intersections can be found using NSolve:

I NSolve[p[x]==q[x],x]

B {{x→ −3.08004}, {x→ −1.20632}, {x→ 0.527291 − 0.985474i},
{x→ 0.527291 + 0.985474i}, {x→ 3.23178}}

The real values a = 3.08004, b = 1.20632 and c = 3.23178 then determine, with reason-
able precision, the x-coordinates of the intersections. We’ll carry these over into Mathemat-
icawith

I a = x /. solutions[[1]];

b = x /. solutions[[2]];

c = x /. solutions[[5]];

Additionally, to highlight the area between the curves over an interval containing these
points, use the Plot command together with the Filled option (although we’ll leave it to
the reader to research why the syntax of the FilledPlot option is what it is).

I Plot[{p[x],q[x]}, {x,a,c}, Filling→{1→{2}}]

-3 -2 -1 1 2 3

-300

-200

-100

100

200

300

To compute the area bounded by the curves, notice that the graph of p lies above that of
q on the (approximate) interval [a, b], while the graph of p lies below that of q on the (ap-
proximate) interval [b, c]. Hence the area between the curves will be given (approximately)
by: ∫ b

a

p(x)− q(x) dx+

∫ c

b

p(x)− q(x) dx

Mathematica can then produce an approximation of the area bounded by the curves with:

I Integrate[p[x]-q[x],{x,a,b}] + Integrate[q[x]-p[x],{x,b,c}]
B 388.854
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More appropriately, though, the area can be written simply as

∫ c

a

|p(x)− q(x)| dx, with-

out regard for the points at which the curves intersect within the interval [a, c]. While a
symbolic antiderivative is not easily computed involving the absolute value of the integrand,
a numeric result is readily available:

I NIntegrate[Abs[p[x]-q[x]], {x,a,c}]
B 388.854

8.5 Exercises

1. Evaluate each of the following using Mathematica. Check your answers using D as best
you can to obtain the original integrand.

(a)

∫ √
x√

1 + 4
√
x
dx (This should be integrable directly)

(b)

∫
sec5 x dx (Check the result against the standard reduction formula)

(c)

∫
cos8 x dx (Check the result against the standard reduction formula)

2. Consider working with

∫
cosx dx

cos2 x+ sinx
by hand. A simple substitution along with

rewriting cos2 x = 1− sin2 x should yield an antiderivative. Attempt to work with the
same integral in Mathematica. What success can you achieve?

3. Evaluate each of the following in Mathematica. Verify that the expression returned is
an antiderivative by evaluating D and manipulating the expression to be the original
integrand as best as you can.

(a)

∫
dx

x
√
ax+ b

(b)

∫ √
2ax− x2

x
dx

(c)

∫
dx

x2
√
ax+ b

(d)

∫ √
2ax− x2

x2
dx

4. Demonstrate the necessary Mathematica syntax to find the solution to the differential
equation y′ = x3−3 sinx that satisfies the initial condition y(1) = 2. (A proper sequence
would involve using Integrate, defining a general antiderivative by adding an arbitrary
constant of integration to the result, then using Solve to determine the value of the
constant.)

5. Verify that Mathematica cannot produce a closed-form antiderivative for

∫
cos(bx) dx

x2 + a2
,

but can produce a value for

∫ ∞
0

cos(bx) dx

x2 + a2
. What is the value of

∫ x

0

cos(bt) dt

t2 + a2
in

Mathematica?

6. Verify that Mathematica produces a closed-form antiderivative for

∫
sin2(ax)

x2
dx in

terms of SinIntegral, and that it produces an exact value for

∫ ∞
0

sin2(ax)

x2
dx. Show
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by hand how

∫
sin2(ax)

x2
dx may be rewritten in terms of SinIntegral.

7. Verify that Mathematica produces a closed-form antiderivative for

∫
cosx2 dx in terms

of FresnelC, and that it produces an exact value for

∫ ∞
0

cosx2 dx. Show by hand how∫ ∞
0

cosx2 dx may be rewritten in terms of FresnelC.

8. Verify that Mathematica produces a closed-form antiderivative for

∫
sinx√
x
dx in terms

of FresnelS, and that it produces an exact value for

∫ ∞
0

sinx√
x
dx. Show by hand how∫

sinx√
x
dx may be rewritten in terms of FresnelS.

9. Estimate the area between the curves f(x) = x4 − 3x2 − 2x, g(x) = x3 + 2x2 − 1, and
the lines x = −1 and x = 3. Use Plot with the FilledPlot option to first identify
the area, and then NIntegrate with the appropriate results extracted in Mathematica
from NSolve to produce the approximation.
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9 Differential Equations

This Chapter introduces the notion of an ordinary, first-order differential equation and shows
how to find a numerical solution using Euler’s Method.

9.1 Ordinary, First-Order Differential Equations

9.1.1 Terminology & Examples

Definition. An ordinary, first-order differential equation is an equation that involves only

an independent variable x, a function y of the variable x, and its derivative
dy

dx
, and that

can be written in the form
dy

dx
= F (x, y).

A differentiable function y = f(x) is said to be a solution to this equation over a domain D
if f ′(x) = F (x, f(x)), for all x ∈ D.

We’ll demonstrate the terminology of this definition with three examples. Only in the
first example will we show how you can actually find the proposed solution. Numerical
techniques for finding solutions are discussed later in the Chapter.

Example 1. Given the differential equation
dy

dx
= −32x, the function y = f(x) = −16x2 is

a solution of the equation, for all real numbers x. Many other functions are also solutions
to the equation, although all must be of the form y = f(x) = −16x2 + C, where C is a
constant.

Mathematica can verify that this function satisfies the differential equation (note: we use
a lower-case letter for the constant of integration here, because the uppercase C already has
a meaning in Mathematica):

I Clear[x,c,f]

f[x ] := -16x^2 + c

f'[x] == -32x

B True

In fact, the solution to this equation is easy to find, since you know from integration that∫
−32x dx = 16x2 + C. However, since the right-hand side of the equation

dy

dx
= F (x, y)

will not always be a function of x alone, simple integration won’t always be enough to find
a solution.

Example 2. One solution of the differential equation
dy

dx
= −2xy is the function y =

f(x) = e−x
2

, for all real x. Additionally, any function of the form y = f(x) = Ce−x
2

, where
C is a constant, will also be a solution to this equation. Again, it is easy to verify that this
function satisfies the differential equation:

I Clear[x,c,f]

f[x ] := c Exp[-x^2]

f'[x] == -2*x*f[x]

B True

Note that in this case, you cannot simply integrate to discover a solution, because the
integrand of

∫
−2xy dx is ambiguous. If y were a constant, we could do the integration, but

here, y depends on x.
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Example 3. Consider the equation
dy

dx
= −x

y
(defined only for values of y 6= 0). Any

function y that satisfies x2 + y2 = C, with C > 0, will be a solution.

This can be verified using implicit differentiation. Indeed, differentiating the equation

x2 + y2 = C with respect to x, and treating y as a function of x, we get 2x+ 2y
dy

dx
= 0, and

upon solving for the term
dy

dx
, we see that

dy

dx
= −x

y
.

In this case, a solution is defined implicitly via the equation x2+y2 = C, although explicit,
differentiable solutions will be of the form y = f(x) = ±

√
C − x2, defined for x satisfying

−
√
C ≤ x ≤

√
C with C ≥ 0. Frequently, we will not be able to find explicit solutions to a

differential equation, so we will have to settle for implicitly-defined solutions.

9.1.2 Particular Solutions to Equations

As we’ve seen, solutions to differential equations usually will not be unique. For equations

in the form
dy

dx
= F (x, y), solutions will, in fact, be members of a one-parameter family of

functions; that is, all solutions will be determined uniquely up the specification of a single
constant.

In the examples above, the families of solutions were {−16x2 + C : C is constant},
{Ce−x2

: C is constant}, and {x2 + y2 = C : C is constant}, respectively.

To specify a solution uniquely, more information must be given than an equation alone.
To motivate what type of additional condition would be sufficient, remember that each
of these families of solutions represents a collection of curves in the plane. For example,
{−16x2 + C : C is constant} represents a collection of parabolas, all opening down, with
vertex on the Y-axis. Indeed, consider making a Table of such functions and Plotting them:

I Clear[c,x]

functions = Table[ -16x^2 + c, c,-20,20,4 ];

Plot[Evaluate[functions],x,-2,2]

-2 -1 1 2

-80

-60

-40

-20

20

To identify any of these several curves uniquely, it’s enough to specify one point through

which the curve passes. For example, if we want the solution to the equation
dy

dx
= −32x

to also be a function whose graph passes through (1, 1), we must choose the value of C so
that −16(1)2 + C = 1, or choose C = 17.

This notion of finding one particular solution to the differential equation by attaching an
identifying characteristic leads to the following:

Definition. If f is a solution to a differential equation
dy

dx
= F (x, y) on a domain D,

then f is said to satisfy an initial condition at a point x0 ∈ D of the form y(x0) = y0 if
f(x0) = y0.
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Example 4. Given the differential equation
dy

dx
= −2xy together with the initial condition

y0 = y(1) = 2, any function of the form y = Ce−x
2

will be a solution of the equation
(as we saw previously), where C is a constant. However, only the particular solution y =

(2e)e−x
2

= 2e1−x2

additionally satisfies the initial condition y0 = y(1) = 2.

9.2 Algebraic Solutions to Differential Equations

A differential equations course is where you’ll learn the algebra of how to find symbolic
solutions to a given differential equation. Calculus students have likely seen at least the
simplest of symbolic techniques called “separation of variables,” which can be used with the
equation of Example 2.

Example 5. We reconsider the differential equation
dy

dx
= −2xy. Treating the terms dy

and dx formally, we rewrite the equation with all references to y on the left side, and all
references to x on the right side as

dy

y
= −2xdx.

Formally integrating both sides, we have∫
dy

y
=

∫
−2x dx, or ln(y) = −x2 + C

where C denotes an arbitrary constant of integration. Exponentiating, we get

y = eln(y) = e−x
2+C = eCe−x

2

= C ′e−x
2

,

where C ′ denotes an arbitrary constant of integration. In other words, the formalism says
that every solution to the equation has the form y = f(x) = Ce−x

2

, where C is a constant.

We will not discuss any other symbolic techniques here, but you’ll want to know that
Mathematica has a built-in operator that implements most of the standard, symbolic tech-
niques used to find solutions to differential equations.

Indeed, the DSolve operator can usually provide a closed-form, symbolic solution for
many ordinary, first-order differential equations. Arguments for DSolve include the inde-
pendent variable (x below), a function that depends on x (y below, that must be written in
the form y[x]), and the equation to be solved (where y'[x] denotes the derivative of the
function y below).

DSolve gives the following results for the equations of Examples 1, 2, and 3 as:

I DSolve[y'[x]==-32x, y[x], x]

B
{{
y(x)→ c1 − 16x2

}}
I DSolve[y'[x]==-2x*y[x], y[x], x]

B
{{

y(x)→ c1e
−x2
}}

I DSolve[y'[x]==-x/y[x], y[x], x]

B
{{
y(x)→ −

√
2c1 − x2

}
,
{
y(x)→

√
2c1 − x2

}}
In all cases, the symbol c1 denotes some constant of integration inserted in the solution

process. (The fact that 2c1 appears in the third of the solutions above should not be a
problem, since such an expression is as much an arbitrary constant as c1 itself.)
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If an initial condition is specified for a given differential equation, it may be added as
another equation, as the first argument of DSolve is allowed to be a list of equations. If

we use Mathematica to solve the problem of Example 4, solving the equation
dy

dx
= −2xy

subject to the initial condition y0 = y(1) = 2, then we write:

I DSolve[y'[x]==-2x*y[x],y[1]==2, y[x], x]

B
{{

y(x)→ 2e1−x2
}}

Not every ordinary, first-order differential equation can be solved using DSolve. Given

the differential equation
dy

dx
= sin(x) + ey, DSolve has no explicit solution (the exact

output will not be shown here, since the computation took several minutes and resulted in
an indefinite integral).

I DSolve[y'[x]==Sin[x]+Exp[y[x]],y[x],x]

In fact, just as we learned earlier with the Integrate operator, not every first-order
differential equation has a solution that can be written in closed form. Our hope in general
is that we will be able to find and be satisfied with numerical solutions for the equations.

9.3 The Geometry of Differential Equations

The problem of finding solutions to differential equations in the form
dy

dx
= F (x, y) can

be viewed quite easily in geometric, rather than algebraic terms. Suppose that y = f(x) is a

solution to the equation. The derivative
dy

dx
gives the slope of the line tangent to the graph

of f at the point (x, f(x)). Requiring that f be a solution of the equation is to require that
whenever (x, y) is on the graph of f , the tangent slope be given by the value of F (x, y).

To see what this means, reconsider Example 2, where the differential equation is given to

be
dy

dx
= F (x, y) = −2xy. Let F denote a small, finite collection of equally-spaced points

(x, y) in the plane for values −2 ≤ x, y ≤ 2. At each point (x, y), sketch a short arrow
segment to the right with slope F (x, y) = −2xy.

For example, at (−2, 1), sketch a short arrow segment with slope 2(2)(1) = 4; at (1, 1),
sketch a short arrow segment with slope 2(1)(1) = 2. The arrow is to point “to the right” in
all cases, to indicate that from that point, we continue with increasing x-coordinate in the
direction of the arrow. The arrows should be the same length at all points. The diagram
below illustrates the concept.

-2 -1 1 2

-2

-1

1

2

Such a collection of points and arrows is technically a vector field and is usually studied
in the later semesters of Calculus. However, in this case, only the slope of the arrow is of
interest. The Mathematica operator VectorField presents such vector fields graphically,
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although it must be loaded from an external package. Hence, the collection of points F and
the short arrow segments attached at each point is shown with:

I field = VectorPlot[{1, -2 x*y}, {x, -2, 2}, {y, -2, 2},
VectorScale → {0.05, 1, None}]
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1
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The arguments for VectorField may require a little research in the Help pages, but for
the moment, it is enough to identify the arguments {x,−2,2} and {y,−2,2} as defining the
x- and y-coordinate range. The arguments for the VectorScale option guarantee that all
vectors are drawn at the same length and fit comfortably into the graphic.

If y = f(x) is to be a solution to the equation
dy

dx
= F (x, y) = −2xy, then whenever its

graph contains one of the illustrated points from which the arrow segments are drawn, the
arrow segment will be tangent to the graph of f . All solutions to this particular equation
are known to be given in the form y = Ce−x

2

, for some constant C. Plotting just a few such
solutions, say for C having values from among {1,−1.5, 2}, we can see how these solutions
match up graphically with the collection of tangent arrow segments.

I solutions = Plot[{Exp[-x^2],-1.5Exp[-x^2],2Exp[-x^2]},{x,-2,2},
Axes→False,PlotStyle→Thickness[0.012]]

Show[field,solutions]
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To conclude, any ordinary, first-order differential equation provides a specification of
tangent slopes. The graphs of solutions to such equations necessarily follow the directions
prescribed by these tangent arrows.

9.4 Numerical Solutions to Differential Equations

Numerical solutions are our best hope for solving arbitrary differential equations. The first
subsection below provides a Mathematica implementation of the well-known Euler’s Method
and will be of interest for pedagogical reasons. For the reader who wishes to quickly see
what numerical solution operators Mathematica has available, the second subsection below
provides the basic details.
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9.4.1 Euler’s Method – The Hands-On Experience

Suppose that f is a solution to the differential equation
dy

dx
= F (x, y) on the interval

[a, a+ ∆x], where ∆x > 0. Suppose f satisfies the initial condition f(a) = y0. We may not
know the value f(a+∆x) exactly, but we can certainly approximate the value y1 = f(a+∆x)
by using a tangent line approximation for f .

Indeed, if ∆x is small and f is reasonably well-behaved, then the value y1 = f(a + ∆x)
should not be significantly different from the value projected by its tangent line at x = a.
That is, as we see below, the value y1 = f(a + ∆x) should be approximated by the value
ỹ1 = f(a) + f ′(a)∆x.

H a , f HaL L

H a+Dx , f Ha+DxL L

H a+Dx , f HaL+ f 'HaLDx L

a a + Dx

This leads naturally to generating an approximate, numerical solution to a differential
equation over an interval [a, b] with initial condition f(a) = y0. We partition the interval
[a, b] into subintervals of short length, and project the solution across each of the subintervals
using tangent line approximations as we described above. That process is now described in
detail, and is due to Leonhard Euler.

Euler’s Method. Suppose that at each point (x, y) in the plane,
dy

dx
has a specified value

F (x, y). We wish to determine a function f for which f ′(x) = F (x, f(x)) for all x in some
interval [a, b], given a prescribed initial value f(a) = y0. That is, f is to be a solution to

the equation
dy

dx
= F (x, y) that satisfies the initial condition f(a) = y0.

To describe an approximate, numerical representation of the solution f ,

• Subdivide the interval [a, b] into n closed subintervals of equal length, with disjoint
interiors. That is, write

[a, b] = [a, x1] ∪ [x1, x2] ∪ . . . ∪ [xn−1, b]

If ∆x =
b− a
n

represents the common width of these subintervals, then the endpoints

of these subintervals are given as xi = a + i∆x, for 1 ≤ i ≤ n. It is convenient in this
representation to write a = x0 and b = xn.
• Use a tangent line approximation for f at the point (a, y0) to estimate the value f(x1) =
f(a + ∆x). Since the derivative at (a, y0) is exactly F (a, y0), observe that f(x1) will
then be approximated by ỹ1 = y0 + F (a, y0)∆x. For notational convenience, we write
ỹ0 = y0.
• Having obtained estimated function values {ỹ0, ỹ1, . . . , ỹi} at the points {x0, x1, . . . , xi},

using tangent line approximations at the points {(x0, ỹ0), (x1, ỹ1), . . . , (xi, ỹi)}, an esti-
mated value for f(xi+1) is obtained using the tangent line approximation with ỹi+1 =
ỹi + F (xi, ỹi)∆x.
• Repeat this process n times, to obtain points {(x0, ỹ0), (x1, ỹ1), . . . , (xn, ỹn)} to numer-

ically represent the solution function f .
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9.4.1.1 Implementing Euler’s Method in Mathematica

First, we will reserve certain notation in the current, global Mathematica environment.
This will greatly simplify the Mathematica you see below.

We’re interested in finding a numerical approximation for a function f that satisfies a

differential equation
dy

dx
= F (x, y) on an interval [a, b], using n subinterval approximations

with ∆x = b−a
n , subject to an initial condition f(a) = y0.

Thus, we’ll assume from now on that

• F denotes the function
dy

dx
= F (x, y),

• a and b denote endpoints of the interval [a, b],

• we’re using n subintervals of common width ∆x =
b− a
n

, and that

• y0 represents the value for the initial condition f(a) = y0.

Euler’s approximation method is now very naturally implemented in Mathematica using
NestList to produce the desired sequence of points {(xi, ỹi) : 0 6 i 6 n}, by repeatedly
applying a transition function t = tF,∆x that transforms a point (x, ỹ) into the point (x +
∆x, ỹ + F (x, ỹ)∆x). The definition of the transition function can be given as follows:

I Clear[t]

t[{x ,y }] := N[{x+dx,y+F[x,y]*dx}]
The N operator is used in the definition above to ensure a numerical, rather than symbolic

result (which would be unwieldy and slow to execute). The examples that follow will assume
that we’ve made this definition.

Example 6. Consider numerically estimating a solution for the equation
dy

dx
= −2xy on

the interval [a, b] = [0, 2], subject to the initial condition y(0) = y0 = 5e, using n = 10
subintervals.

First, a symbol to represent the function F of the differential equation is given. Addi-
tionally, we define symbols for the interval [a, b], the number of subintervals and the initial
value y0.

I Clear[F,a,b,n,y0]

F[x ,y ] := -2x*y

a = 0.0;

b = 2.0;

n = 10;

y0 = N[5E];

Since the solution satisfies the initial condition f(a) = f(0) = y0 = 5e, the point (0, 5e)
lies on the solution curve. The transition function t will be repeatedly applied, starting at
this point, a total of n = 10 times, and the distance ∆x traversed by each iteration will be

∆x =
2− 0

10
=

2

10
. After defining ∆x, we get a list of approximate values for the solution:

I dx = (b-a)/n;

approximateValues = NestList[t,{a,y0},n]
B {{0., 13.5914}, {0.2, 13.5914}, {0.4, 12.5041}, {0.6, 10.5034}, {0.8, 7.98262},
{1., 5.42818}, {1.2, 3.25691}, {1.4, 1.69359}, {1.6, 0.74518},
{1.8, 0.268265}, {2., 0.0751142}}

The result of this computation is exactly the list {(xi, ỹi) : 0 6 i 6 n}. Using ListPlot,
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we can see the result (shown below)..

The actual solution of this equation is y = f(x) = (5e)e−x
2

= 5e1−x2

. Using this, the
approximate values are now compared graphically (connecting the points with thinner line
segments) with the actual solution (the thicker curve) to the equation over the interval [0, 2]:

I Clear[f]

f[x ] := 5.0 Exp[1-x^2]

approximation = ListPlot[approximateValues,

Joined→True,

PlotStyle→{Black,AbsoluteThickness[0.5]}];
actualsolution = Plot[f[x],{x,0,2},

PlotStyle→{Black, Thick}]
Show[actualsolution,approximation]
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Note that the actual solution (thicker curve) is concave down in [0, 1], where tangent lines
will be above the curve. Hence, Euler’s tangent line approximation will necessarily overes-
timate the true solution. Over the interval [1, 2], the actual solution is concave up (where
tangent lines will be below the curve). Graphically, Euler’s tangent line approximation then
underestimates the true solution throughout most of [1, 2].

Example 7. Consider the problem of solving the equation
dy

dx
= y cosx, on the interval

[1, 7], subject to the initial condition y(1) = 1, using n = 20 subdivisions.

First, the differential equation will be represented in the global environment using the
symbols:

I Clear[F,a,b,n,y0]

F[x ,y ] := y*Cos[x]

a = 1.0;

b = 7.0;

n = 20;

y0 = 1.0;

The desired solution satisfies the initial condition y(1) = y0 = 1, so the point (1, 1) must
lie on the solution curve. The transition function t = tF,∆x will be repeatedly applied,
starting at this point, a total of n = 20 times, and the distance ∆x traversed by each
iteration will be ∆x = (7−1)/20 = 6/20. The approximate values for the solution are easily
generated:

I dx = (b-a)/n;

approximateValues = NestList[t,{a,y0},n]
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B {{1., 1.}, {1.3, 1.16209}, {1.6, 1.25535}, {1.9, 1.24435}, {2.2, 1.12367},
{2.5, 0.925282}, {2.8, 0.702897}, {3.1, 0.504211}, {3.4, 0.353079},
{3.7, 0.250672}, {4., 0.186894}, {4.3, 0.150245}, {4.6, 0.13218}, {4.9, 0.127732},
{5.2, 0.134879}, {5.5, 0.153837}, {5.8, 0.186543}, {6.1, 0.2361},
{6.4, 0.305744}, {6.7, 0.396843}, {7., 0.505703}}

The general solution to this equation is a function of the form f(x) = Cesin(x), where C

is a constant. By choosing C =
1

esin 1
= e− sin 1, a solution f(x) = e− sin(1)esin(x) = esin(x)

esin(1)
is

found that satisfies f(1) = 1. We’re not concerned in this chapter with how you go about
finding this to be the solution, but we can have Mathematica verify what we said:

I Clear[f]

f[x ] := Exp[Sin[x]]/Exp[Sin[1]]

f'[x] == f[x] Cos[x] (* does f satisfy the equation? *)

B True

I f[1] == 1 (* is f[1] equal to 1? *)

B True

Graphically combining both the estimated solution and the exact solution generates:

I approximation = ListPlot[approximateValues,

Joined→True,

PlotStyle→{Black,AbsoluteThickness[0.5]}];
actualsolution = Plot[f[x],{x,1,7},

PlotStyle→{Black, Thick}]
Show[actualsolution,approximation, PlotRange→All]
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Note that when the actual solution is concave down (approximately in the interval [1, 2.5]),
the estimated solution tends to overestimate the actual solution. The estimated solution
underestimates the actual solution when the actual solution is concave up (approximately
in the interval [2.5, 7]). This behavior is necessarily the case in general with estimated
solutions, since they are based on tangent line approximations.

9.4.1.2 Error Analysis with Euler’s Method

To compare Euler’s results numerically with an actual solution, we can generate a table
of numerical values of the solution across a given interval, and compare them directly with
those of the estimated solution. In the case of Example 7, where approximate solution values
were obtained throughout [1, 7] at equally-spaced x -values differing by ∆x = 6

20 , values for

the actual solution f(x) = esin(x)

esin(1) can be given with:

I actualValues = Table[N[{x,f[x]}],{x,1,7,6/20}]
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B {{1., 1.}, {1.3, 1.12985}, {1.6, 1.17129}, {1.9, 1.11052}, {2.2, 0.967563},
{2.5, 0.784272}, {2.8, 0.602611}, {3.1, 0.449378}, {3.4, 0.333867}, {3.7, 0.253775},
{4., 0.202245}, {4.3, 0.172452}, {4.6, 0.159588}, {4.9, 0.161391}, {5.2, 0.178186},
{5.5, 0.212883}, {5.8, 0.270882}, {6.1, 0.359287}, {6.4, 0.484362},
{6.7, 0.646216}, {7., 0.831533}}

Using listability and the Map operator to pick out only the y-coordinates, the differences
between y-coordinates of the estimated and actual solutions can be given with:

I errors = N[Map[Last,actualValues-approximateValues]]

B {0., -0.0322381, -0.0840617, -0.133831, -0.156102, -0.14101, -0.100286,
-0.0548331, -0.0192116, 0.00310302, 0.0153519, 0.0222069, 0.0274081,
0.033659, 0.0433069, 0.0590459, 0.0843383, 0.123187, 0.178618,
0.249374, 0.32583}

The largest of these differences between estimated solution and actual solution, in absolute
value, can be found with:

I Max[Abs[errors]]

B 0.32583

The calculation above may be repeated using n = 40, 80 and 160 subintervals, with the
absolute value of the largest error between estimated and actual values reported, to produce
the following table:

n largest error

20 0.32583
40 0.0.179613
80 0.0949202
160 0.0488847

These results provide evidence that as the number of subintervals doubles, the largest error
between observed and estimated values is approximately halved. This suggests (and it
indeed can be shown) that Euler’s Method is generally an order-one method; that is, the
error introduced by the method is approximately proportional to 1

n . Hence, increasing n
will generally improve accuracy of the estimation procedure – but one would certainly be
interested in finding better numerical techniques to speed up convergence!

9.4.2 Mathematica Support for Numerical Solutions

NDSolve is primary operator for finding numerical solutions to differential equations in
Mathematica.

Example. To find a solution to the differential equation
dy

dx
= F (x, y) = −2xy, subject to

the initial condition y(1) = 2 over the interval [−2, 2], (the problem of of Example 2), we
use

I solution = NDSolve[{y'[x]==-2 x*y[x], y[1]==2}, y[x], {x,-2,2}]
B {{y(x)→ InterpolatingFunction [(−2. 2.) , <>] (x)}}

The output is, indeed, unusual for our experience, and includes a reference to a special
Mathematica operator named InterpolatingFunction. As a user, you don’t really to need
to know much more than that a result defined in terms of an InterpolatingFunction is
a complete, numerical method for giving approximate solutions to the differential equation
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on the interval [−2, 2].

To work with the result, you must strip out one enclosing layer of curly braces and use
the “dummy variable trick” for the value of y(x) that we’ve seen before to turn this into a
function definition (note: the use of =, rather than :=, is important below! ).

I Clear[f]

f[x ] = y[x] /. solution[[1]]

You can see that the function so defined has the correct value at x = 1:

I f[1]

B 2

And further, you can see a graph of this solution over the interval [−2, 2]:

I g1 = Plot[f[x], {x,-2,2}]
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Finally, you can see that the numerical approximating function f very well matches the
slope (vector) field associated with the differential equation.

I g2 = VectorPlot[{1,-2x*y}, {x,-2,2}, {y,0,6},
VectorScale→{0.05, 1, None}];

Show[g1,g2]
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9.5 Exercises

1. Use Euler’s Method to find approximate, numerical solutions for each of the following
equations, using n = 20 subintervals. In each case, i) ListPlot the result against a Plot
of the known solution, and comment as to whether the result is good or not visually;
ii) use Mathematica to demonstrate that the indicated actual solution satisfies both the
equation and the initial condition; and iii) use DSolve to see whether Mathematica can
solve the equation and whether it finds the same result as the one given.

(a)
dy

dx
=

sin 3x− 2xy

x2
on
[π

2
, π
]
, with initial condition y

(π
2

)
= y0 =

4

3π2
.

(b)
dy

dx
= 3y + xe3x on [0, 1], with initial condition y(0) = 4.
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(c)
dy

dx
= y2 cosx on [0, 1], with initial condition y(0) =

1

2
.

(d)
dy

dx
=

2y − x3ex

x
on [1, 2], with initial condition y(1) = 0.

(e)
dy

dx
= e2x − 3y on [0, 2], with initial condition y(0) = 1.

(f)
dy

dx
=

4x3y

1 + x4
on [0, 2], with initial condition y(0) = 1.

(g)
dy

dx
= sin(3x)− 2y on [0, 2], with initial condition y(0) =

10

13
.

Actual Solutions: a.) f(x) = 1−cos 3x
3x2 b.) f(x) = (x2+8)e3x

2 , c.) f(x) = 1
2−sin x , d.)

f(x) = −x2(ex−e), e.) f(x) = 4+e5x

5e3x , f.) f(x) = 1+x4, g.) f(x) = e−2x− 3 cos 3x−2 sin 3x
13 .

2. Consider the differential equation dy
dx = 30 − 5y on the interval [0, 6], subject to the

initial condition y(0) = 1.

a) Use DSolve to find the solution of this equation and Plot the result.

b) Use Euler’s Method for n = 10 subintervals and ListPlot the result against the Plot
of the solution. What do you observe (e.g., is the estimated solution good, does it
underestimate the actual solution, etc.) ?

c) What course of action should you follow at this point?

3. Consider the differential equation dy
dx = 3x2−2xy

x2−2y on the interval [0, 2], subject to the

initial condition y(0) = 2.

a) Verify that DSolve cannot find an explicit solution to this equation.

b) Use implicit differentiation to show that any function y defined implicitly by the
equation x3 − x2y + y2 = C is a solution to the equation.

c) The curve x3 − x2y + y2 = 4 contains the point (0, 2). Sketch this curve over the
interval [0, 2] using ImplicitPlot.

d) Use Euler’s Method to construct a numerical solution with n = 40 on [0, 2]. Compare
the result with the curve produced in part c). Is the result good from a visual standpoint
?

e) Repeat part d), but with initial condition y(0) = 1 and compare the result against
the curve defined by the equation x3 − x2y + y2 = 1. What abnormalities arise? How
do you explain them ?

4. Verify that DSolve cannot solve either of the following equations, and produce a nu-
merical estimate using Euler’s Method with n = 50 subintervals on [−1, 1], subject to
the initial condition y(−1) = 0: a) dy

dx = (sinx)(cos y) b) dy
dx = sin(xy)

5. Find numerical error estimates, for values of n = 10, 20, 40, 80 and 160, for the equation
of Example 5 in the text (as was done in the error analysis for Example 4). Verify that
doubling n decreases the maximum error of the approximation by about a factor of 2.

6. A sky diver jumps out of a plane, and his parachute opens after 2 seconds of free
fall, at which time his velocity has already reached 64 feet per second. His velocity
y (measured in feet per second) at any time x > 2 (measured in seconds) obeys the
differential equation dy

dx = −32.0 + 0.17y2. An initial condition on velocity is, of course,
y(2) = −64.
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a) Use Euler’s Method to approximate the velocity function y over the time interval
2 6 x 6 5, using n = 50 subintervals. What approximate value do you find for y(5) ?

b) Approximately at what velocity does the parachutist eventually land ? What result
or observation from your solution to part a.) helps you predict this ?


