
COSC 120: Computer Science I

Module 1
Instructor:

Dr. Xiaohong (Sophie) Wang

(xswang@salisbury.edu)

Department of Computer Science

Salisbury University

Spring 2024

mailto:xswang@salisbury.edu

Content

▪ Introduction to fundamental computer and

programming concepts

▪ Introduction to the C++ Programming

Language

▪ Expressions, Input, Output and Data Type

Conversions

2

Fundamental Computer &

Programming Concepts

1. Von Neumann computer architecture and

the Fetch-and-Execute Cycle

2. Language compilation process

3. Problem solving process

4. Variables

3

1. Von Neumann Computer Architecture and

Fetch-and-Execute Cycle

The fetch-and-execute cycle:

➢ CPU executes a program that is stored as a sequence of machine language

instructions in main memory.

➢ It does this by reading/fetching an instruction from memory, load it into registers, and

then carrying out/executing, that instruction.

➢ This "fetch and execute" process repeats until all instructions of a program finish.

4 Partial contents of this note refer to: http://math.hws.edu/eck/cs124/javanotes8/c1/s1.html

2. Language Compilation Process

➢ Most programs written in higher

level programming languages:

Java, C++, Python

➢ They need to be translated into

machine language programs so

computer can understand

➢ Compilation is a sequence of steps

that processes statements written

in a higher programming language

and turns them into machine

language code.

5 Refer to: https://medium.com/coding-den/the-compilation-process-a1307824d40e

3. Problem Solving Process

➢ A computer can be programmed to

accept data (input), process it into

useful information (output).

➢ input, process and output actions

are controlled by programs

(software) and executed by

hardware (cpu, etc.).

➢ When we write programs, we need

to gather input, process it and

produce output.

➢ Information being processed should

be stored in the memory.

6

4. Variables

➢ Information being read in

and being processed are

stored in memory.

➢ Variables are memory

used to keep information

such as numbers or

words.

➢ Variables have types,

names and sizes.

7

Introduction to C++ Programming Language

1. What is C++ language?

2. Variables

3. Data types

4. Input/output (Formatted output)

5. Arithmetic operator

6. ++ and -- operators

7. C++ library

8

• Partial contents of this note refer to https://www.pearson.com/us/

• Copyright 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved

• Dissemination or sale of any part of this note is NOT permitted

1. C++ language

▪ A cross-platform language that can be used

to create high-performance applications

▪ An extension to the C language

▪ One of the world's most popular programming

languages

▪ An object-oriented programming (OOP)

language

▪ Give programmers a high level of control over

system resources and memory

9 https://www.w3schools.com/cpp/cpp_intro.asp

https://www.w3schools.com/cpp/cpp_intro.asp

Advantage of C++

▪ C++ is relatively-low level and is a system

programming language

▪ It has a large community

▪ It has a relatively clear and mature standard

▪ Modularity

▪ Reusability and readability

10 https://www.slideshare.net/THOOYAVANV/c-overview-ppt-72294760

Disadvantage of C++

▪ Can’t support garbage collection

▪ Not secure because it has a pointer, friend

function, and global variable

11 http://www.cplusplus.com/forum/beginner/236902/

Example of a C++ Program

// sample C++ program

#include <iostream>

using namespace std;

int main()

{

cout << "Hello, there!";

return 0;

}

comment

preprocessor directive

which namespace to use

beginning of function named main

beginning of block for main

Send 0 to operating system

end of block for main

output statement

string literal

1/30/2024

12

Special Characters

Character Name Meaning

// Double slash Beginning of a comment

Pound sign Beginning of preprocessor
directive

< > Open/close brackets Enclose filename in #include

() Open/close
parentheses

Used when naming a
function

{ } Open/close brace Encloses a group of
statements

" " Open/close
quotation marks

Encloses string of
characters

; Semicolon End of a programming
statement

1/30/2024

13

2. Variables

▪ Variable: a storage location in memory

➢Has a name and a type of data it can hold

➢Must be defined before it can be used

Variable Definition

1/30/2024

14

Identifier

▪ An identifier is a programmer-defined name for

some part of a program: variables, functions, etc.

▪ How to define an identifier?

➢Should be representative.

• E.g. Pi = 3.14

➢Follow the following rules:

• A combination of alphabets, numbers and underscores

• Not start with number

• Can NOT use any of the C++ key words

Note: C++ is a case-sensitive language. So does the identifier name.

Question: What do key words mean? Why do we need them?

1/30/2024

15

C++ Key Words

Note: Editors or IDEs may help you to mark the key words in a specific color

1/30/2024

16

3. C++ data types

▪ int: Integer

▪ float: Floating-point

▪ char: Individual character

▪ string: 0, 1 or more characters

▪ bool: Boolean value: true or false

17

3.1 Integer

▪ Integer variables hold whole numbers

int length, width = 5;

unsigned int area;

Example:

Same type can be defined on the same line

Different types must be in different definitions

Note: The exact sizes of these data types are dependent on the computer system you are using

1/30/2024

18

3.2 Floating-point

▪ Can hold real numbers:

➢Fixed point (decimal) notation:

31.4159 0.0000625

➢E notation:

3.14159E1 6.25e-5

▪ Three floating-point data types

float

double

long double

▪ Are double by default

1/30/2024

19

Assign floating-point value to integer variable

▪ The fractional part of the value is discarded
int number;

number = 6.9; //assign 6 to number

▪ What is the output of the following code?
int num;

num = 6.999999999999999999999;

cout << ”The output is: ” << num;

Note: Floating-point value has limited precision. WHY?

The output is: 7

Example code: FloatLimitPrecision.cpp

1/30/2024

20

3.3 char

▪ Used to hold one character

▪ Usually 1 byte of memory

➢ Question: how many different characters C++ can store at most?

▪ A character must be enclosed in single quote marks

➢ Note: double quote marks enclose a string

▪ Numeric value of character from the character set is

stored in memory:

CODE:
char letter;

letter = 'C';

MEMORY:
letter

67

For numeric value of a character, please refer to Appendix A: The ASCII Character Set

1/30/2024

21

3.4 string

▪ A series of characters in consecutive memory
locations:

"Hello"

▪ Stored with the null terminator, \0, at the end:

▪ Comprised of the characters between the
double quote marks " "

H e l l o \0

1/30/2024

22

The C++ string Class

▪ Special data type supports working with
strings

#include <string>

▪ Can define string variables in programs:

string firstName, lastName;

▪ Can receive values with assignment operator:

firstName = "George";

lastName = "Washington";

▪ Can be displayed via cout

cout << firstName << " " << lastName;

1/30/2024

23

String length and concatenation

▪ Use length() to find the length of a string:

▪ To concatenate (join) multiple strings:

string state = "Texas";

int size = state.length();

greeting2 = greeting1 + name1;

greeting1 = greeting1 + name2;

1/30/2024

24

3.5 bool

▪ Represents values that are true or false

▪ bool variables are stored as small integers

▪ false is represented by 0, true by 1:

bool allDone = true;

bool finished = false;

allDone finished

1 0

1/30/2024

25

Determining the Size of a Data Type

▪ The sizeof operator reports the number of

bytes of memory used by any data type:

double amount;

cout << "A double is stored in "

<< sizeof(double) << “ bytes\n";

cout << "Variable amount is stored in "

<< sizeof(amount)

<< “ bytes\n";

1/30/2024

26

Constant variable

▪ Constant variable (named constant): variable
whose content cannot be changed during
program execution

▪ Used for representing constant values with
descriptive names:

const double TAX_RATE = 0.0675;

const int NUM_STATES = 50;

▪ Often named in uppercase letters

1/30/2024

27

3.6 Initialization and Assignment

▪ To initialize a variable means to assign it a

value when it is defined:

int length = 12;

▪ Can initialize some or all variables:

int length = 12, width = 5, area;

1/30/2024

28

Initialization and Assignment

▪ An assignment statement uses the = operator
to store a value in a variable.

item = 12;

➢This statement assigns the value 12 to the item
variable.

▪ The variable receiving the value must appear
on the left side of the = operator.

▪ This will NOT work:

12 = item; // ERROR!

29

4. Input/output

▪ cout object

➢Display information on the computer’s screen

▪ cin object

➢Read data typed at the keyboard

30

1/30/2024

4.1 The cout Object

▪ Need iostream file, i.e. #include <iostream>

▪ Use the stream insertion operator << to send

one or more items to cout then display:

cout << "Programming is fun!";

cout << "Hello " << "there!";

▪ Use the endl manipulator to start a new line

cout << "Programming is" << endl;

cout << "fun!";

▪ Use the \n escape sequence to start a new

line

cout << "Programming is\n";

cout << "fun!";

NOT in

quotation

marks

in quotation

marks

1/30/2024

31

Formatting Output

▪ Requires iomanip file, i.e. #include <iomanip>

▪ Can control how output displays for numeric,

string data:

➢size

➢position

➢number of digits

720

720.0

720.00000000

7.2e+2

Example:

1/30/2024

32

Stream Manipulators (1)

▪ Some affect just the next value displayed:
➢setw(x): print in a field at least x spaces wide.

Use more spaces if field is not wide enough

int num1 = 2897, num2 = 5;

cout << num1 << " " << num2;

cout << setw(6) << num1 << setw(6) << num2;

Output:

2897 5

Output:

2897 5

1/30/2024

33

Stream Manipulators (2)

▪ Some affect values until changed again:
➢fixed: use decimal notation for floating-point

values

➢setprecision(x):
• when used with fixed, print floating-point value

using x digits after the decimal.

• Without fixed, print floating-point value using x
significant digits (i.e. total digits before and after
the decimal point)

➢showpoint: display decimal point and trailing
zeros even if there is no fractional part

Note: if a value is in fewer digits of precision than specified by setprecision,

the manipulator will have no effect.

1/30/2024

34

Example

Continued…

35

Example (cont’d)
Use setprecision with fixed,

2 digits after the decimal point

Display at least 8 spaces wide

36

4.2 The cin Object

▪ Standard input object

▪ Need iostream header file

➢#include <iostream>

▪ Used to read input from keyboard

▪ Information retrieved from cin with >>

▪ Input is stored in one or more variables

1/30/2024

37

The cin Object

▪ You should always use cout to display a

prompt before each cin statement

▪ cin converts data to the type that matches

the variable:

int height;

cout << "How tall is the room? ";

cin >> height;

cout << height;

How tall is the room? 6.45

6

1/30/2024

38

The cin Object

▪ Can be used to input more than one value:

cin >> height >> width;

▪ Multiple values from keyboard must be

separated by spaces

▪ Order is important: first value entered goes to

first variable, etc.

1/30/2024

39

Input a string

▪ Using cin with the >> operator to input strings can

cause problems:

➢ It passes over and ignores any leading whitespace

characters (spaces, tabs, or line breaks)

➢ It stops reading when it gets to the next whitespace

▪ You can use a C++ function named getline

40

string name;

cout << “Enter you name: "

cin >> name;

Input:

Kate Smith

name = Kate

string name;

cout << “Enter you name: "

getline(cin, name);

Input:

Kate Smith

name = Kate Smith

1/30/2024

5. Arithmetic operator

▪ Used for performing numeric calculations

▪ C++ has unary, binary, and ternary operators:

➢unary (1 operand) -5

➢binary (2 operands) 13 - 7

➢ ternary (3 operands) exp1 ? exp2 : exp3

1/30/2024

41

Binary Arithmetic Operators
SYMBOL OPERATION EXAMPLE VALUE OF ans

+ addition ans = 7 + 3; 10

- subtraction ans = 7 - 3; 4

* multiplication ans = 7 * 3; 21

/ division ans = 7 / 3; 2

% modulus ans = 7 % 3; 1

Note:

• Division operator returns the quotient.

• Modulus operator returns the reminder of an integer division.

1/30/2024

42

A Closer Look at the / Operator

▪ / (division) operator performs integer division

if both operands are integers

➢The result is always an integer

➢The remainder will be discarded

cout << 13 / 5; // displays 2

cout << 91 / 7; // displays 13

▪ If either operand is floating point, the result is

floating point

cout << 13 / 5.0; // displays 2.6

cout << 91.0 / 7; // displays 13.0

1/30/2024

43

A Closer Look at the % Operator

▪ % (modulus) operator computes the

remainder resulting from integer division

cout << 13 % 5; // displays 3

▪ % requires integers for both operands

cout << 13 % 5.0; // error

1/30/2024

44

Operator precedence

▪ In an expression with more than one operator, the

operator with the highest precedence works first.

➢ https://en.cppreference.com/w/cpp/language/operator_precede

nce

▪ If two operators have the same precedence, they work

according to their associativity.

Example: 2 + 2 * 2 – 2

▪ Use parentheses () to override the order of operations

Example: (2 + 2) * 2 – 2

evaluate first
(higher

precedence)

evaluate
second

(Left-to-right)

evaluate third
(Left-to-right)

1/30/2024

45

https://en.cppreference.com/w/cpp/language/operator_precedence

Practice

5 + 2 * 4 =

10 / 2 – 3 =

8 + 12 * 2 – 4 =

4 + 17 % 2 – 1 =

46

13

2

28

4

1/30/2024

Type Conversion (automatically)

▪ When using the = operator, the type of expression on

right will be converted to type of variable on left.

▪ When operating on values of different data types, the

lower one is promoted to the type of the higher one.

long double

double

float

unsigned long

long

unsigned int

int

Highest

Lowest

1/30/2024

47

Type Casting (manually)

▪ Manual data type conversion, the format is:

static_cast<DataType>(Value)

▪ Useful for floating point division using ints:

double m;

m = static_cast<double>(y2-y1)

/(x2-x1);

▪ Useful to see int value of a char variable:

char ch = 'C';

cout << ch << " is "

<< static_cast<int>(ch);

1/30/2024

48

Combined Assignment

▪ The combined assignment operators provide

a shorthand for these types of statements.

▪ The statement

sum = sum + 1;

is equivalent to

sum += 1;

1/30/2024

49

6. ++ and -- operators

▪ ++ is the increment operator. It adds one to a
variable.

val++; is the same as val = val + 1;

▪ -- is the decrement operator. It subtracts one
from a variable.

val--; is the same as val = val - 1;

▪ ++ and -- can be used before (prefix) or after
(postfix) a variable:
++val; val++;

--val; val--;

1/30/2024

50

Prefix vs. Postfix

▪ ++val, --val, val++,val-- are expressions,
therefore they have value

▪ In prefix mode (++val, --val) the operator
increments or decrements, then returns the value of
the variable, i.e., the value of the expression is the
"update" value of the variable

▪ In postfix mode (val++, val--) the operator
returns the value of the variable, then increments or
decrements, i.e., the value of the expression is
the value of the variable before being updated

1/30/2024

51

Examples

int num, val = 12;

cout << val++; // displays 12,

// val is now 13;

cout << ++val; // sets val to 14,

// then displays it

num = --val; // sets val to 13,

// stores 13 in num

num = val--; // stores 13 in num,

// sets val to 12

1/30/2024

52

7. C++ library

▪ A library is a package of code that can be reused

▪ Typically, a C++ library comes in two pieces:

1) A header file that defines the functionality the library

is exposing (offering) to the programs

2) A precompiled binary that contains the

implementation of that functionality pre-compiled into

machine language.

▪ C++ Standard Library headers (open the link)

➢https://en.cppreference.com/w/cpp/header

➢E.g.: <iostream>, <string>, <iomanip>, <cmath>

53 https://www.learncpp.com/cpp-tutorial/a1-static-and-dynamic-libraries/

1/30/2024

https://en.cppreference.com/w/cpp/header

<cmath> header file

▪ Require cmath header file

▪ Take double as input, return a double

▪ Commonly used functions: pow(2,8)

sin Sine

cos Cosine

tan Tangent

sqrt Square root

log Natural (e) log

abs Absolute value (also take and return an int)

For more functions in <cmath> library, refer to:

• https://en.cppreference.com/w/cpp/header/cmath

1/30/2024

54

https://en.cppreference.com/w/cpp/header/cmath

<cstdlib> header file

▪ Include general functions for program control,

dynamic memory allocation, random numbers,

sort and search

▪ Functions for random number generation

➢rand():

• Return a pseudo-random integer between 0 and the

largest int the compute holds.

• Yield same sequence of numbers each time program

is run.

➢srand(x):

• Initialize random number generator with unsigned

int x

1/30/2024

55

rand() function

▪ How to limit the range of the generated random

number?

y = (rand() % (maxValue – minValue + 1)) + minValue;

• minValue is the lowest number in the range

• maxValue is the highest number in the range

▪ Example:

56

const int MIN_VALUE = 1;

const int MAX_VALUE = 100;

y = (rand() % (MAX_VALUE – MIN_VALUE + 1)) + MIN_VALUE ;

This code assigns a random number in range of 1 – 100 to variable y.

1/30/2024

Thanks

57

Reading textbook

▪ Chapter 1, 2, 3

58

Where to find resources/help?
▪ Required textbook:

➢ Starting Out with C++: From Control Structures through Objects, by Tony

Gaddis, Pearson (9th Edition)

▪ Instructor’s web page for the course:

➢ Dr. Sophie Wang: http://faculty.Salisbury.edu/~xswang/cosc120.htm

▪ SU myClass Canvas:

➢ https://www.salisbury.edu/administration/academic-affairs/instructional-

design-delivery/cms/

➢ Course policy, lecture ppts/videos, labs, assignments, quizzes, projects,

etc.

▪ Department tutoring program (free!):

➢ Mathematical Sciences & Computer Science Tutoring Center | Salisbury

University

▪ Lab assistant – Ethan Grey (egray3@gulls.salisbury.edu):

➢ Office hours:

59

http://faculty.salisbury.edu/~xswang/cosc120.htm
https://www.salisbury.edu/administration/academic-affairs/instructional-design-delivery/cms/
https://www.salisbury.edu/academic-offices/science-and-technology/mathematical-sciences/tutoring-center.aspx
https://www.salisbury.edu/academic-offices/science-and-technology/mathematical-sciences/tutoring-center.aspx

How to be successful?

▪ Show up

▪ Read textbook/lecture notes before and after

each class

➢Many small pieces of information that may not be

covered in class

▪ Start early to work on your projects

▪ Experiment & practice

➢Try and find out what will happen. Why?

▪ Ask for help

60

