Say not you know another
entirely, till you have
divided an inheritance with
him.

—Johann Kasper Lavater

This method is to define as
the number of a class the
class of all classes similar to
the given class.

—Bertrand Russell

Good as it is to inherit a
library, it is better to collect
one.

—Augustine Birrell

Save base authority from
others’ books.

—William Shakespeare

Object-
Oriented
Programming:
Inheritance

OBJECTIVES

In this chapter you will learn:

m To create classes by inheriting from existing classes.
= How inheritance promotes software reuse.

= The notions of base classes and derived classes and the
relationships between them.

m The protected member access specifier.

m The use of constructors and destructors in inheritance
hierarchies.

m The differences between public, protected and
private inheritance.

m The use of inheritance to customize existing software.

ducation)nc., UpperSaddleRiver,NJ. All rightsreserved.

2

Chapter 23 Object-Oriented Programming: Inheritance

Self-Review Exercises

23.1

23.2

Fill in the blanks in each of the following statements:

a) is a form of software reuse in which new classes absorb the data and behav-
iors of existing classes and embellish these classes with new capabilities.

ANS: Inheritance.

b) A base class’s members can be accessed only in the base-class definition or
in derived-class definitions.

ANS: protected.

c) Ina(n) relationship, an object of a derived class also can be treated as an
object of its base class.

ANS: is-a or inheritance.

d) Ina(n) relationship, a class object has one or more objects of other classes
as members.

ANS: has-a or composition or aggregation.

¢) Insingle inheritance, a class exists in a(n) relationship with its derived classes.

ANS: hierarchical.

f) A base class’s members are accessible within that base class and anywhere

that the program has a handle to an object of that base class or to an object of one of its
derived classes.

ANS: public.

g) Abase class’s protected access members have a level of protection between those of pub-
Tic and access.

ANS: private.

h) Cs++ provides for , which allows a derived class to inherit from many base
classes, even if these base classes are unrelated.

ANS: multiple inheritance.

i) When an object of a derived class is instantiated, the base class’s is called
implicitly or explicitly to do any necessary initialization of the base-class data members
in the derived-class object.

ANS: constructor.

j) When deriving a class from a base class with pub1ic inheritance, pub1ic members of the
base class become members of the derived class, and protected members
of the base class become members of the derived class.

ANS: public, protected.

k) When deriving a class from a base class with protected inheritance, pub1ic members of
the base class become members of the derived class, and protected mem-
bers of the base class become members of the derived class.

ANS: protected, protected.

State whether each of the following is true or false. If false, explain why.

a) Base-class constructors are not inherited by derived classes.

ANS: True.

b) A has-a relationship is implemented via inheritance.

ANS: False. A has-a relationship is implemented via composition. An #s-a relationship is
implemented via inheritance.

c) A Car class has an 75-a relationship with the Steeringwheel and Brakes classes.

ANS: False. This is an example of a has-a relationship. Class Car has an #s-a relationship
with class vehicle.

d) Inheritance encourages the reuse of proven high-quality software.

ANS: True.

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

Exercises 3

e) When a derived-class object is destroyed, the destructors are called in the reverse order
of the constructors.
ANS: True.

Exercises

23.3 Discuss the ways in which inheritance promotes software reuse, saves time during program
development and helps prevent errors.

ANS: Inheritance allows developers to create derived classes that reuse code declared already
in a base class. Avoiding the duplication of common functionality between several
classes by building an inheritance hierarchy to contain the classes can save developers
a considerable amount of time. Similarly, placing common functionality in a single
base class, rather than duplicating the code in multiple unrelated classes, helps pre-
vent the same errors from appearing in multiple source-code files. If several classes
each contain duplicate code containing an error, the software developer has to spend
time correcting each source-code file with the error. However, if these classes take ad-
vantage of inheritance, and the error occurs in the common functionality of the base
class, the software developer needs to modify only the base class’s code.

23.4 Draw an inheritance hierarchy for students at a university similar to the hierarchy shown in
Fig. 23.2. Use Student as the base class of the hierarchy, then include classes UndergraduateStudent
and GraduateStudent that derive from Student. Continue to extend the hierarchy as deep (i.e., as
many levels) as possible. For example, Freshman, Sophomore, Junior and Senior might derive from
UndergraduateStudent, and DoctoralStudent and MastersStudent might derive from Graduate-
Student. After drawing the hierarchy, discuss the relationships that exist between the classes. [Noze:
You do not need to write any code for this exercise.]

ANS:
Student
UndergraduateStudent GraduateStudent
Freshman / \ Senior DoctoralStudent MastersStudent
Sophomore Junior

This hierarchy contains many “is-a” (inheritance) relationships. An UndergraduateStudent is
a Student. A GraduateStudent 7s # Student too. Each of the classes Freshman, Sophomore, Junior
and Senior is an UndergraduateStudent and is 2 Student. Each of the classes DoctoralStudent and
MastersStudent 7s # GraduateStudent and 7s 2 Student.

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

4 Chapter 23 Object-Oriented Programming: Inheritance

23.5 (Package Inberitance Hierarchy) Package-delivery services, such as FedEx®, DHL® and
UPS®, offer a number of different shipping options, each with specific costs associated. Create an
inheritance hierarchy to represent various types of packages. Use Package as the base class of the hi-
erarchy, then include classes TwoDayPackage and OvernightPackage that derive from Package. Base
class Package should include data members representing the name, address, city, state and ZIP code
for both the sender and the recipient of the package, in addition to data members that store the
weight (in ounces) and cost per ounce to ship the package. Package’s constructor should initialize
these data members. Ensure that the weight and cost per ounce contain positive values. Package
should provide a pub1ic member function calculateCost that returns a double indicating the cost
associated with shipping the package. Package’s calculateCost function should determine the cost
by multiplying the weight by the cost per ounce. Derived class TwoDayPackage should inherit the
functionality of base class Package, but also include a data member that represents a flat fee that the
shipping company charges for two-day-delivery service. TwoDayPackage’s constructor should receive
a value to initialize this data member. TwoDayPackage should redefine member function calculate-
Cost so that it computes the shipping cost by adding the flat fee to the weight-based cost calculated
by base class Package’s calculateCost function. Class OvernightPackage should inherit directly
from class Package and contain an additional data member representing an additional fee per ounce
charged for overnight-delivery service. OvernightPackage should redefine member function calcu-
TlateCost so that it adds the additional fee per ounce to the standard cost per ounce before calculat-
ing the shipping cost. Write a test program that creates objects of each type of Package and tests
member function calculateCost.
ANS:

// Exercise 23.5 Solution: Package.h
// Definition of base class Package.
#ifndef PACKAGE_H
#define PACKAGE_H

#include <string>
using std::string;

class Package
{
public:
// constructor initiliazes data members
Package(const string &, const string &, const string &,
const string &, int, const string &, const string &, const string &,
const string &, int, double, double);

void setSenderName(const string &); // set sender's name

string getSenderName() const; // return sender's name

void setSenderAddress(const string &); // set sender's address
string getSenderAddress() const; // return sender's address

void setSenderCity(const string &); // set sender's city

string getSenderCity() const; // return sender's city

void setSenderState(const string &); // set sender's state
string getSenderState() const; // return sender's state

void setSenderZIP(int); // set sender's ZIP code

int getSenderZIP() const; // return sender's ZIP code

void setRecipientName(const string &); // set recipient's name
string getRecipientName() const; // return recipient's name

void setRecipientAddress(const string &); // set recipient's address
string getRecipientAddress() const; // return recipient's address

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

Exercises 5

void setRecipientCity(const string &); // set recipient's city
string getRecipientCity() const; // return recipient's city

void setRecipientState(const string &); // set recipient's state
string getRecipientState() const; // return recipient's state

void setRecipientZIP(int); // set recipient's ZIP code

int getRecipientZIP() const; // return recipient's ZIP code

void setWeight(double); // validate and store weight

double getWeight() const; // return weight of package

void setCostPerOunce(double); // validate and store cost per ounce
double getCostPerOunce() const; // return cost per ounce

double calculateCost() const; // calculate shipping cost for package
private:

// data members to store sender and recipient's address information

string senderName;

string senderAddress;

string senderCity;

string senderState;

int senderZIP;

string recipientName;

string recipientAddress;

string recipientCity;

string recipientState;

int recipientZIP;

double weight; // weight of the package
double costPerOunce; // cost per ounce to ship the package
}; // end class Package

#endif

// Exercise 23.5 Solution: Package.cpp
// Member-function definitions of class Package.

#include "Package.h" // Package class definition

// constructor initiliazes data members
Package: :Package(const string &sName, const string &sAddress,
const string &sCity, const string &sState, int sZIP,
const string &rName, const string &rAddress, const string &rCity,
const string &rState, int rZIP, double w, double cost)
senderName(sName), senderAddress(sAddress), senderCity(sCity),
senderState(sState), senderZIP(sZIP), recipientName(rName),
recipientAddress(rAddress), recipientCity(rCity),
recipientState(rState), recipientZIP(rZIP)

setWeight(w); // validate and store weight
setCostPerOunce(cost); // validate and store cost per ounce
} // end Package constructor

// set sender's name
void Package::setSenderName(const string &name)

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

6 Chapter 23 Object-Oriented Programming: Inheritance

{
senderName = name;
} // end function setSenderName

// return sender's name
string Package::getSenderName() const
{
return senderName;
} // end function getSenderName

// set sender's address
void Package::setSenderAddress(const string &address)
{
senderAddress = address;
} // end function setSenderAddress

// return sender's address
string Package::getSenderAddress() const
{
return senderAddress;
} // end function getSenderAddress

// set sender's city
void Package::setSenderCity(const string &city)
{
senderCity = city;
} // end function setSenderCity

// return sender's city
string Package::getSenderCity() const
{
return senderCity;
} // end function getSenderCity

// set sender's state
void Package::setSenderState(const string &state)
{
senderState = state;
} // end function setSenderState

// return sender's state
string Package::getSenderState() const
{
return senderState;
} // end function getSenderState

// set sender's ZIP code
void Package::setSenderZIP(int zip)
{

senderZIP = zip;
} // end function setSenderZIP

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

Exercises

// return sender's ZIP code
int Package::getSenderZIP() const
{
return senderZIP;
} // end function getSenderZIP

// set recipient's name
void Package::setRecipientName(const string &name)
{
recipientName = name;
} // end function setRecipientName

// return recipient's name
string Package::getRecipientName() const
{
return recipientName;
} // end function getRecipientName

// set recipient's address
void Package::setRecipientAddress(const string &address)
{
recipientAddress = address;
} // end function setRecipientAddress

// return recipient's address
string Package::getRecipientAddress() const
{
return recipientAddress;
} // end function getRecipientAddress

// set recipient's city
void Package::setRecipientCity(const string &city)
{
recipientCity = city;
} // end function setRecipientCity

// return recipient's city
string Package::getRecipientCity() const
{
return recipientCity;
} // end function getRecipientCity

// set recipient's state
void Package::setRecipientState(const string &state)
{
recipientState = state;
} // end function setRecipientState

// return recipient's state
string Package::getRecipientState() const
{
return recipientState;
} // end function getRecipientState

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

8 Chapter 23 Object-Oriented Programming: Inheritance

// set recipient's ZIP code
void Package::setRecipientZIP(int zip)
{
recipientZIP = zip;
} // end function setRecipientZIP

// return recipient's ZIP code
int Package::getRecipientZIP() const
{
return recipientZIP;
} // end function getRecipientZIP

// validate and store weight
void Package::setWeight(double w)
{

weight = (w < 0.0) ?2 0.0 : w;
} // end function setWeight

// return weight of package
double Package::getWeight() const
{

return weight;
} // end function getWeight

// validate and store cost per ounce
void Package::setCostPerOunce(double cost)
{
costPerOunce = (cost < 0.0) ? 0.0 : cost;
} // end function setCostPerQunce

// return cost per ounce
double Package::getCostPerOunce() const
{
return costPerQOunce;
} // end function getCostPerOunce

// calculate shipping cost for package
double Package::calculateCost() const
{

return getWeight() * getCostPerOunce();
} // end function calculateCost

// Exercise 23.5 Solution: TwoDayPackage.h
// Definition of derived class TwoDayPackage.
#ifndef TWODAY_H

#define TWODAY_H

#include "Package.h" // Package class definition

class TwoDayPackage : public Package
{
public:
TwoDayPackage(const string &, const string &, const string &,
const string &, int, const string &, const string &, const string &,
const string &, int, double, double, double);

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

Exercises 9

void setFlatFee(double); // set flat fee for two-day-delivery service
double getFlatFee() const; // return flat fee

double calculateCost() const; // calculate shipping cost for package
private:

double flatFee; // flat fee for two-day-delivery service
}; // end class TwoDayPackage

#endif

// Exercise 23.5 Solution: TwoDayPackage.cpp
// Member-function definitions of class TwoDayPackage.

#include "TwoDayPackage.h" // TwoDayPackage class definition

// constructor

TwoDayPackage: : TwoDayPackage(const string &sName,
const string &sAddress, const string &sCity, const string &sState,
int sZIP, const string &rName, const string &rAddress,
const string &rCity, const string &rState, int rZIP,
double w, double cost, double fee)
: Package(sName, sAddress, sCity, sState, sZIP,

rName, rAddress, rCity, rState, rZIP, w, cost)

{
setFlatFee(fee);

} // end TwoDayPackage constructor

// set flat fee
void TwoDayPackage::setFlatFee(double fee)
{
flatFee = (fee < 0.0) ?2 0.0 : fee;
} // end function setFlatFee

// return flat fee
double TwoDayPackage::getFlatFee() const
{
return flatFee;
} // end function getFlatFee

// calculate shipping cost for package
double TwoDayPackage::calculateCost() const
{
return Package::calculateCost() + getFlatFee();
} // end function calculateCost

// Exercise 23.5 Solution: OvernightPackage.h
// Definition of derived class OvernightPackage.
#ifndef OVERNIGHT_H

#define OVERNICHT_H

#include "Package.h" // Package class definition

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

10 Chapter 23 Object-Oriented Programming: Inheritance

class OvernightPackage : public Package
{
public:
OvernightPackage(const string &, const string &, const string &,
const string &, int, const string &, const string &, const string &,
const string &, int, double, double, double);

void setOvernightFeePerOunce(double); // set overnight fee
doubTle getOvernightFeePerOunce() const; // return overnight fee

double calculateCost() const; // calculate shipping cost for package
private:

double overnightFeePerOunce; // fee per ounce for overnight delivery
}; // end class OvernightPackage

#endif

// Exercise 23.5 Solution: OvernightPackage.cpp
// Member-function definitions of class OvernightPackage.

#include "OvernightPackage.h" // OvernightPackage class definition

// constructor
OvernightPackage::OvernightPackage(const string &sName,
const string &sAddress, const string &sCity, const string &sState,
int sZIP, const string &rName, const string &rAddress,
const string &rCity, const string &rState, int rZIP,
double w, double cost, double fee)
: Package(sName, sAddress, sCity, sState, sZIP,
rName, rAddress, rCity, rState, rZIP, w, cost)
{
setOvernightFeePerOunce(fee); // validate and store overnight fee
} // end OvernightPackage constructor

// set overnight fee
void OvernightPackage: :setOvernightFeePerOunce(double overnightFee)
{

overnightFeePerOunce = (overnightFee < 0.0) ? 0.0 : overnightFee;
} // end function setOvernightFeePerOunce

// return overnight fee
double OvernightPackage: :getOvernightFeePerOunce() const
{
return overnightFeePerQunce;
} // end function getOvernghtFeePerQunce

// calculate shipping cost for package
double OvernightPackage::calculateCost() const

{
return getWeight() * (getCostPerOunce() + getOvernightFeePerOunce());
} // end function calculateCost

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

Exercises 11

// Exercise 23.5 Solution: ex23_05.cpp
// Driver program for Package hierarchy.
#include <iostream>

using std::cout;

using std::endl;

#include <iomanip>
using std::setprecision;
using std::fixed;

#include "Package.h" // Package class definition
#include "TwoDayPackage.h" // TwoDayPackage class definition
#include "OvernightPackage.h" // OvernightPackage class definition

int mainQ)
{
Package packagel("Lou Brown", "1 Main St", "Boston", "MA", 11111,
"Mary Smith", "7 Elm St", "New York", "NY", 22222, 8.5, .5);
TwoDayPackage package2("Lisa Klein", "5 Broadway", "Somerville", "MA",
33333, "Bob George", "21 Pine Rd", "Cambridge", "MA", 44444,
10.5, .65, 2.0);
OvernightPackage package3("Ed Lewis", "2 Oak St", "Boston", "MA",
55555, "Don Kelly", "9 Main St", "Denver", "CO", 66666,
12.25, .7, .25);

cout << fixed << setprecision(2);

// print each package's information and cost
cout << "Package 1:\n\nSender:\n" << packagel.getSenderName()
<< '"\n' << packagel.getSenderAddress() << '\n'
<< packagel.getSenderCity() << ", " << packagel.getSenderState()
<< ' ' << packagel.getSenderZIP(Q);
cout << "\n\nRecipient:\n" << packagel.getRecipientName()
<< '"\n' << packagel.getRecipientAddress() << '\n'
<< packagel.getRecipientCity() << ", "
<< packagel.getRecipientState() <<
<< packagel.getRecipientZIP();

cout << "\n\nCost: $" << packagel.calculateCost() << endl;

[

cout << "\nPackage 2:\n\nSender:\n" << package2.getSenderName()
<< '"\n' << package2.getSenderAddress() << '\n'

" "

<< package2.getSenderCity() << ", << package2.getSenderState()
<< ' ' << package2.getSenderZIP(Q);
cout << "\n\nRecipient:\n" << package2.getRecipientName()
<< '"\n' << package2.getRecipientAddress() << '\n'
<< package2.getRecipientCity() << ", "
<< package2.getRecipientState() <<
<< package2.getRecipientZIP();
cout << "\n\nCost: $" << package2.calculateCost() << endl;

cout << "\nPackage 3:\n\nSender:\n" << package3.getSenderName()
<< '"\n' << package3.getSenderAddress() << '\n'

" "

<< package3.getSenderCity() << ", " << package3.getSenderState()

<< << package3.getSenderZIP(Q);

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

12 Chapter 23 Object-Oriented Programming: Inheritance

cout << "\n\nRecipient:\n" << package3.getRecipientName()
<< '"\n' << package3.getRecipientAddress() << '\n'
<< package3.getRecipientCity() << ", "
<< package3.getRecipientState() <<
<< package3.getRecipientZIP();
cout << "\n\nCost: $" << package3.calculateCost() << endl;
return 0;
} // end main

Package 1:

Sender:

Lou Brown

1 Main St
Boston, MA 11111

Recipient:

Mary Smith

7 Elm St

New York, NY 22222

Cost: $4.25
Package 2:

Sender:

Lisa Klein

5 Broadway
Somerville, MA 33333

Recipient:
Bob George
21 Pine Rd
Cambridge, MA 44444

Cost: $8.82
Package 3:

Sender:

Ed Lewis

2 Oak St

Boston, MA 55555

Recipient:
Don Kelly
9 Main St
Denver, CO 66666

Cost: $11.64

23.6 (Account Inheritance Hierarchy) Create an inheritance hierarchy that a bank might use to
represent customers’ bank accounts. All customers at this bank can deposit (i.e., credit) money into
their accounts and withdraw (i.e., debit) money from their accounts. More specific types of accounts
also exist. Savings accounts, for instance, earn interest on the money they hold. Checking accounts,
on the other hand, charge a fee per transaction (i.e., credit or debir).

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

Exercises 13

Create an inheritance hierarchy containing base class Account and derived classes Savings-
Account and CheckingAccount that inherit from class Account. Base class Account should include one
data member of type double to represent the account balance. The class should provide a constructor
that receives an initial balance and uses it to initialize the data member. The constructor should validate
the initial balance to ensure that it is greater than or equal to 0.0. If not, the balance should be set
to 0.0 and the constructor should display an error message, indicating that the initial balance was
invalid. The class should provide three member functions. Member function credit should add an
amount to the current balance. Member function debit should withdraw money from the Account
and ensure that the debit amount does not exceed the Account’s balance. If it does, the balance should
be left unchanged and the function should print the message "Debit amount exceeded account bal-
ance." Member function getBalance should return the current balance.

Derived class SavingsAccount should inherit the functionality of an Account, but also include
a data member of type double indicating the interest rate (percentage) assigned to the Account.
SavingsAccount’s constructor should receive the initial balance, as well as an initial value for the
SavingsAccount’s interest rate. SavingsAccount should provide a public member function
calculatelnterest that returns a double indicating the amount of interest earned by an account.
Member function calculateInterest should determine this amount by multiplying the interest
rate by the account balance. [Note: SavingsAccount should inherit member functions credit and
debit as is without redefining them.]

Derived class CheckingAccount should inherit from base class Account and include an addi-
tional data member of type double that represents the fee charged per transaction. Checking-
Account’s constructor should receive the initial balance, as well as a parameter indicating a fee
amount. Class CheckingAccount should redefine member functions credit and debit so that they
subtract the fee from the account balance whenever either transaction is performed successfully.
CheckingAccount’s versions of these functions should invoke the base-class Account version to per-
form the updates to an account balance. CheckingAccount’s debit function should charge a fee
only if money is actually withdrawn (i.e., the debit amount does not exceed the account balance).
[Hint: Define Account’s debit function so that it returns a bool indicating whether money was
withdrawn. Then use the return value to determine whether a fee should be charged.]

After defining the classes in this hierarchy, write a program that creates objects of each class and
tests their member functions. Add interest to the SavingsAccount object by first invoking its cal-
culateInterest function, then passing the returned interest amount to the object’s credit function.

ANS:

// Solution 23.10 Solution: Account.h
// Definition of Account class.
#ifndef ACCOUNT_H

#define ACCOUNT_H

class Account

{

pubTic:
Account(double); // constructor initializes balance
void credit(double); // add an amount to the account balance
bool debit(double); // subtract an amount from the account balance
void setBalance(double); // sets the account balance
double getBalance(); // return the account balance

private:
double balance; // data member that stores the balance

}; // end class Account

#endif

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

14

VoO~NONUNDR WN =

uuuuuUuUUunbbhrL,bEb,r,EADEDDBDBABBAUUWVLUWUWUWLDWWWWWUWUNNNNNNNNNNDN = = o o e o oo oo - -
NHL UWUN=0OVOOONOOTUNL,UWUWN=OOVOOINOOTUBDWN=0LVLONOOTUBDUWN=OCOLOO~NOTUDLWN=O

Chapter 23 Object-Oriented Programming: Inheritance

// Exercise 23.6 Solution: Account.cpp

// Member-function definitions for class Account.
#include <iostream>

using std::cout;

using std::endl;

#include "Account.h" // include definition of class Account

// Account constructor initializes data member balance
Account: :Account(double initialBalance)
{
// if initialBalance is greater than or equal to 0.0, set this value
// as the balance of the Account
if (initialBalance >= 0.0)
balance = initialBalance;
else // otherwise, output message and set balance to 0.0

{

cout << "Error: Initial balance cannot be negative." << endl;
balance = 0.0;
} // end if...else

} // end Account constructor

// credit (add) an amount to the account balance
void Account::credit(double amount)
{
balance = balance + amount; // add amount to halance
} // end function credit

// debit (subtract) an amount from the account balance
// return bool indicating whether money was debited
bool Account::debit(double amount)
{
if (amount > balance) // debit amount exceeds balance
{
cout << "Debit amount exceeded account balance." << endl;
return false;

} // end if
else // debit amount does not exceed balance
{

balance = balance - amount;
return true;
} // end else
} // end function debit

// set the account balance
void Account::setBalance(double newBalance)
{
balance = newBalance;
} // end function setBalance

// return the account balance
doubTe Account::getBalance()
{

return balance;
} // end function getBalance

© Copyright1992-2007PearsorEducation/nc., UpperSaddleRiver,NJ. All rightsreserved.

O~NONUND WN =

VONOUNDWN =

~Nounbh WN=0O

O~NONUND WN =

WIN=0\VV

Exercises

// Exercise 23.6 Solution: SavingsAccount.h
// Definition of SavingsAccount class.
#1ifndef SAVINGS_H

#define SAVINGS_H

#include "Account.h" // Account class definition

class SavingsAccount : public Account

{

public:
// constructor initializes balance and interest rate
SavingsAccount(double, double);

double calculateInterest(); // determine interest owed
private:

15

double interestRate; // interest rate (percentage) earned by account

}; // end class SavingsAccount

#endif

// Exercise 23.6 Solution: SavingsAccount.cpp
// Member-function definitions for class SavingsAccount.

#include "SavingsAccount.h" // SavingsAccount class definition

// constructor initializes balance and interest rate

SavingsAccount: :SavingsAccount(double initialBalance, double rate)

: Account(initialBalance) // initialize bhase class
{

interestRate = (rate < 0.0) ? 0.0 : rate; // set interestRate
} // end SavingsAccount constructor

// return the amount of interest earned
doubTe SavingsAccount::calculateInterest()
{

return getBalance() * interestRate;
} // end function calculateInterest

// Exercise 23.6 Solution: CheckingAccount.h
// Definition of CheckingAccount class.
#ifndef CHECKING_H

#define CHECKING_H

#include "Account.h" // Account class definition

class CheckingAccount : public Account

{

public:
// constructor initializes balance and transaction fee
CheckingAccount(double, double);

© Copyright1992-2007PearsorEducation/nc., UpperSaddleRiver,NJ. All rightsreserved.

16 Chapter 23 Object-Oriented Programming: Inheritance

void credit(double); // redefined credit function

bool debit(double); // redefined debit function
private:

double transactionFee; // fee charged per transaction

// utility function to charge fee
void chargeFee();
}; // end class CheckingAccount

#endif

// Exercise 23.6 Solution: CheckingAccount.cpp

// Member-function definitions for class CheckingAccount.
#include <iostream>

using std::cout;

using std::endl;

#include "CheckingAccount.h" // CheckingAccount class definition

// constructor initializes balance and transaction fee
CheckingAccount: :CheckingAccount(double initialBalance, double fee)
: Account(initialBalance) // initialize bhase class
{
transactionFee = (fee < 0.0) ? 0.0 : fee; // set transaction fee
} // end CheckingAccount constructor

// credit (add) an amount to the account balance and charge fee
void CheckingAccount::credit(double amount)
{
Account::credit(amount); // always succeeds
chargeFee();
} // end function credit

// debit (subtract) an amount from the account balance and charge fee
bool CheckingAccount::debit(double amount)
{

bool success = Account::debit(amount); // attempt to debit

if (success) // if money was debited, charge fee and return true

{
chargeFee();
return true;
} // end if

else // otherwise, do not charge fee and return false
return false;
} // end function debit

// subtract transaction fee
void CheckingAccount::chargeFee()
{
Account::setBalance(getBalance() - transactionFee);
cout << "$" << transactionFee << " transaction fee charged." << endl;
} // end function chargeFee

© Copyright1992-2007PearsorEducation/nc., UpperSaddleRiver,NJ. All rightsreserved.

Exercises 17

// Exercise 23.6 Solution: ex23_6.cpp
// Test program for Account hierarchy.
#include <iostream>

using std::cout;

using std::endl;

#include <iomanip>
using std::setprecision;
using std::fixed;

#include "Account.h" // Account class definition
#include "SavingsAccount.h" // SavingsAccount class definition
#include "CheckingAccount.h" // CheckingAccount class definition

int mainQ)
{
Account accountl(50.0); // create Account object
SavingsAccount account2(25.0, .03); // create SavingsAccount object

CheckingAccount account3(80.0, 1.0); // create CheckingAccount object

cout << fixed << setprecision(2);

// display initial balance of each object

cout << "accountl balance: $" << accountl.getBalance() << endl;
cout << "account2 balance: $" << account2.getBalance() << endl;
cout << "account3 balance: $" << account3.getBalance() << endl;

cout << "\nAttempting to debit $25.00 from accountl." << endl;
accountl.debit(25.0); // try to debit $25.00 from accountl
cout << "\nAttempting to debit $30.00 from account2." << endl;
account2.debit(30.0); // try to debit $30.00 from account2
cout << "\nAttempting to debit $40.00 from account3." << endl;
account3.debit(40.0); // try to debit $40.00 from account3

// display balances

cout << "\naccountl balance: $" << accountl.getBalance() << endl;
cout << "account2 balance: $" << account2.getBalance() << endl;
cout << "account3 balance: $" << account3.getBalance() << endl;

cout << "\nCrediting $40.00 to accountl." << endl;
accountl.credit(40.0); // credit $40.00 to accountl
cout << "\nCrediting $65.00 to account2." << endl;
account2.credit(65.0); // credit $65.00 to account?2
cout << "\nCrediting $20.00 to account3." << endl;
account3.credit(20.0); // credit $20.00 to account3

// display balances

cout << "\naccountl balance: $" << accountl.getBalance() << endl;
cout << "account2 balance: $" << account2.getBalance() << endl;
cout << "account3 balance: $" << account3.getBalance() << endl;

// add interest to SavingsAccount object account2

double interestEarned = account2.calculateInterest();
cout << "\nAdding $" << interestEarned << " interest to account2."

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

18 Chapter 23 Object-Oriented Programming: Inheritance

<< endl;
account2.credit(interestEarned);

cout << "\nNew account2 balance: $" << account2.getBalance() << endl;
return 0;
} // end main

accountl balance: $50.00
account2 balance: $25.00
account3 balance: $80.00
Attempting to debit $25.00 from accountl.

Attempting to debit $30.00 from account2.
Debit amount exceeded account balance.

Attempting to debit $40.00 from account3.
$1.00 transaction fee charged.

accountl balance: $25.00
account2 balance: $25.00
account3 balance: $39.00
Crediting $40.00 to accountl.
Crediting $65.00 to account2.

Crediting $20.00 to account3.
$1.00 transaction fee charged.

accountl balance: $65.00
account2 balance: $90.00
account3 balance: $58.00
Adding $2.70 interest to account2.

New account2 balance: $92.70

© Copyright1992-2007PearsorEducationnc., UpperSaddleRiver,NJ. All rightsreserved.

	Deitel: © Copyright 1992-2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

