C:\Documents and Settings\xswang\Local Settings\Temp\FrontPageTempDir\non-virtual.cpp

/* non-virtual.cpp
Simple program to demonstrate non-virtual overloaded member functions -
the class type of the parameter determines which instance to call (static binding)

Sophie wang

Created: October 10, 2006

Current: October 10, 2006
*/

#include <iostream>

class One({
public:
void Print () {std::cout <<"Print from One\n";}

}i

class Two:public One{
public:
void Print () {std::cout <<"Print from Two\n";}
}i

void PrintO (One one)

{

one.Print () ;

}

void Printl (One& one)

{

one.Print () ;

}

void Print2 (One* onePtr)

{

onePtr->Print () ;

}

void Print3 (One one, One &oneRef, One *onePtr)
{

one.Print () ;

oneRef.Print () ;

onePtr->Print () ;
}

int main ()

{

One one;
Two two;

PrintO(one); // One::Print is called
PrintO (two); // One::Print is called

Printl (one); // One::Print is called
Printl (two); // One::Print is called

Print3(one, one, &one); // One::Print, One::Print, One::Print
Print3(two, two, &two); // One::Print, One::Print, One::Print

One *onePtr;
onePtr = new One;

Print2 (onePtr); // One::Print is called

onePtr = new Two;
Print?2 (onePtr); // One::Print is called

return 0;



C:\Documents and Settings\xswang\Local Settings\Temp\FrontPageTempDir\non-virtual.cpp

}

2



