COSC 220: Computer Science ||
Module 2

Instructor:

Dr. Xiaohong (Sophie) Wang
()

Department of Mathematics & Computer Science
Salisbury University
Spring 2021

Salisbury

mailto:xswang@salisbury.edu

Pointers

Pointer Variables

Relationship between Arrays and Pointers
Pointer Arithmetic

Pointers as Function Parameters

Dynamic Memory Allocation

o 0k Wb oE

Returning Pointers from Functions

« Partial contents of this note refer to https://www.pearson.com/us/
« Copyright 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved
« Dissemination or sale of any part of this note is NOT permitted

’ Salisbury

Challenges

Pointer "seems" the most challenging concepts in
C/C++

"seems" means "it looks different, but it is not if you
pay attention to detailed concepts

The keys to understand it are:
I. understanding of variables and data types

li. understanding of operators' context
For example, *, &, what do those operator do?

They mean different things depend on where they are used.

lil. understanding of static vs. dynamic concepts
: Salisbury

Variable Review

1. What is a variable? A variable

IS a block of memory
has an address (used to locate it in memory)

has a name (used by a programmer to locate it in the
memory easily)

has a restriction on its content (what type of information
are allowed to store in there)

has a size (how big the block of memory is)

has a set of operation rules (what operations are allowed
to performed on it)

Salisbury

Variable Review

2. When are the name, size, operation rules of a
variable defined?

- when a variable is defined, for example,
int age; Age(10010000)

v" A block of memory (starts at location 10010000) now has a name
llagell

v" The data type of the variable is "int"

v""int" determines the content of the block (integer value only), the size
of the block (4 bytes depends) and operations (+,-,/,*)

: Salisbury

= Each variable is stored at a unigue address

Address

90000000
S00RBLO1
S0V 2
90000063
90000004
S00RBLBS5
90000006
SPvLe7
S00RBLOS8
Elalalslslalals)
SPORBVBA
S00BLOB
SPeLOC
S0eBLED
9000BO0OE
SPOPLOF
S0PV 10
S0 11

Content

00
00
00
RE
FF
FF
1F
FF
FF
FF
FF
FF
FF
FF
90
00
00
00

Name

111

} 555

3

}ddd

Type

int

short

double 1FFFFFFFFFFFFFFF

int#*

Mote: All numbers in hexadecimal

Value

POOOODFF (25510)

FFFF (-110)

(4.4501477170144023E-30810)

90000000

6

http://www.c-jlump.com/bcc/c155c/MemAccess/MemAccess.html

Salisbury

Operator context

Operators mean different things depends where it is being used

* What is the meaning of "/"?
v When you use it between two integer variables (or values)?
v"When you use it between two variables (or values) when one of them is not

integer?

| When you use it before or after another "/"* or " * " ("//","/*", "*[")?

1 What is the meaning of "*"
I When you use it between two variables of int, float, double (or numbers)?
| When you use it before or after "/" ("/*", "*[")?

[What is the meaning of "&"?
v"When you use it in the prototype or header of a function: void foo(int &x)?

v"When you use it as "&&" or "&": (age > 10 && age <=20orx & y: x and y
are integer variables)

7 Salisbury

Big pictures about pointer

1. Pointer is a data type

2. When a variable is defined as a pointer variable of certain type;

| a block of memory is associated with this variable

| the content of the variable is the address to another memory location used to
store a value of that certain type)

| the size of the block is whatever the size to contain a memory address
| the set of operation rules to perform on a pointer variable: &, ++,--, *

3. To make things more complicated, "*" has different meanings when it is associated
with a pointer variable depending where it is being used

e int *ptr; orint* ptr; orint * ptr; // define a pointer variable "ptr"

« *ptr = 10; // put value from the rhs of the assignment operator (10) in pointee
memory. "*" mean dereference here

« cout << *ptr; // retrieve the value in the pointee (10). "*" mean dereference here

: Salisbury

1. Pointer Variables

= Each variable is stored at a unigue address

Address Content Name Type Value

90000000 00

90000001 0o iii int ©0BOOOFF (25510)
90000002 00

90000003 FF

90000004 FF SSS short FFFF(-110)

90000005 FF

90000006 1F 3\

90000007 FF

90000008 FF

98000003 FF \. ddd double 1FFFFFFFFFFFFFFF
9000000A FF (4.4501477170144023E-30815)
900000 0B FF

9000000C FF

9000000D FF y,

90 00000E 90

9000 OF 00 N

90000010 00 ptr int e 1% 1515151 515]%)

9011 (515} Mote: All numbers in hexadecimal

Question: The value of a variable can be accessed through variable name.
How to access the address of a variable?

9 http://www.c-jlump.com/bcc/c155c/MemAccess/MemAccess.html Sahsbury

Address Operator

» Use address operator & to get address of a
variable:
int iii = 255;
cout << &iii; // prints address 90000000
// 1in hexadecimal

» Avariable’s address is the address of the first byte
allocated to that variable

* Do not confuse address operator with reference
» Address operator is used only with variable name

» & symbol is used together with data type when defining
a reference variable
vold doubleInt (int &num) {
num *= 2

}

10

Salisbury

Pointer Variables

= Pointer variable : Often just called a pointer,
it's a variable that holds an address
> Itself is a variable

> Its value is the address of another variable. It
"points" to the data

ptr

0x7fffa0757dd4

Ox7fff98b499%e8 = Address of pointer variable ptr

Var

Value of variable var (*ptr)

Ox7fffa0757dd4d « Address of variable var (Stored at ptr)

!

https://www.geeksforgeeks.org/pointers-c-examples/ Sahsbury

Something Like Pointers: Arrays

* When we pass an array as an argument to a function,
we actually pass the array’s beginning address

const int SIZE = 5;
int numbers|[SIZE] = {1, 2, 3, 4, 5};
showValues (numbers, SIZE);

numbers array

— = 1 | 2| 3|45

showValues (numbers, SIZE);

' L
address 5

|
The values parameter, in 1]

- void showValues(int values[], int size)
the showValues function, ¢

pOintS to the numbers array. for (int count = 0; count < size; count++)
— cout << values[count] << endl; —

} Yy

Something Like Pointers: Reference Variables

= When we use reference variables. For example:
volid getOrder (int &donuts) {

cout << "How many doughnuts do you want? ";
cin >> donuts;

}

» Then call it with this code:
int jellyDonuts;
getOrder (jellyDonuts) ;

jellyDonuts variable

.
>

The donuts parameter, in the
getordery jellYFO““ts” getOrder function, receives the
o address of the jellyDonuts

[variable (create an alias)

void getOrder(int &donuts)
{

cout << "How many doughnuts do you want? ";
cin >> donuts;

} ry

Pointer Variables

Pointer variables are yet another way using a
memory address to work with a piece of data.

Pointers are more "low-level" than arrays and
reference variables.

Your code has to specify that the value should
be stored in the location referenced by the
pointer variable.

Salisbury

Pointer Variables

= Definition:
dataType *pointer name;
» dataType IS the data type that the pointer points to
= Example:
int “*intptr;
» Read as: “intptr can hold the address of an int”

» Spacing in definition does not matter:

int * intptr; // same as above
int* intptr; // same as above

Salisbury

Pointer Variables

» Assigning an address to a pointer variable:

int *intptr;
intptr = #

» Memory layout:

25 0x4a00

A

address of num: 0x4a00

* |[tis a good habit to initialize pointer variables.
» Using special value nullptr if initialization address
IS unknown

» nullptr represents address 0
int *ptr = nullptr;

Salisbury

Example

#include <iostream>
using namespace std;

int main()

{
int x = 25: // int variable
int *ptr = nullptr; // Pointer variable, can point to an int
ptr = &X; // Store the address of X in ptr
cout << "The value in x is " << x << endl;
cout << "The address of x is " << ptr << endl;
return 0;
}

Program Output

The value in x is 25
The address of x is 0x7e00

Salisbury

The Indirection Operator

* The indirection operator (*) dereferences
a pointer
» & : get the address of a variable

»* . get the value at an address that the
pointer points to
int x = 25;

int *intptr = &x;
cout << *intptr << endl;
N Output 25.

*1intptr = 100;
cout << *intptr << endl;
N Output 100.

Salisbury

2. Relationship between Arrays and Pointers

= Array name is starting address of array
int vals[] = {4, 7, 11};

4 '/ 11

starting address of vals: 0x4a00

cout << vals; // displays 0x4a00
cout << wvals[0]; // displays 4

19 Salisbury

Arrays and Pointers

= Array hame can be used as a constant

pointer:
int vals[] = {4, 7, 11};
cout << *vals; // displays 4

= Pointer can be used as an array name:

int *valptr = vals;

cout << valptr[0]; // displays 4
cout << valptr[l]; // displays 7
cout << valptr[2]; // displays 11

Salisbury

Pointers In Expressions

Given:
int vals[]={4,7,11}, *valptr;
valptr = vals;

What is valptr + 17
» It means (address in valptr) + (1 * size of an int)
> It points to the next element in the array

cout << *(valptr+l); //displays 7
cout << *(valptr+2); //displays 11

» Must use () as shown in the expressions

Question: What is the difference between * (valptr + 1) and *valptr + 1 ?

Salisbury

Array Access

= Array elements can be accessed in many ways:

Array access method Example
array name and [index] vals[2] = 17;
pointer to array and [index] |valptr[2] = 17;
array name and offset *(vals + 2) = 17;
arithmetic
pointer to array and offset *(valptr + 2) = 17;
arithmetic

Note: No bounds checking performed on array access, whether using array name or a pointer

Salisbury

Example

#include <iostream>
using namespace std;

Int main(){
const Int NUM COINS =5;
double coins[NUM _ COINS] {0.05, 0.1, 0.25, 0.5, 1.0},
double *doublePtr: // Pointer to a double
Iint count;

doublePtr = coins;

cout << "Output values using index with pointer: \n";
for (count = 0; count < NUM_COINS; count++){
cout << doubIePtr[count] <"

cout << "\nOutput values using offset with array name: \n";
for (count = 0; count < NUM_COINS; count++){

cout << *(coms + count) <<"'";
Output values using index with pointer:

return O; 0.050.10.250.51
} Output values using offset with array name:
0.050.10.250.51

Salisbury

3. Pointer Arithmetic

= QOperations on pointer variables:

Operation Example
int vals[]={4,7,11};
int *valptr = vals;
++, -- valptr++; // points at 7

valptr--; // now points at 4

+, - (pointer and int)

cout << *(valptr +

2); // 11

+=, —-= (pointer
and int)

valptr = vals; // points at 4
valptr += 2; // points at 11

- (pointer from pointer)

cout << valptr-val;
// (number of ints)
// and val

// difference
between valptr

Salisbury

Example

#include <iostream>
using namespace std;

int main(){
const int SIZE = 8;
int set[SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
Int *numPtr = nullptr;
int count;

numPtr = set;

cout << "The numbers in set are: \n"":
for (count = 0; count < SIZE; count++){
cout << *numPtr<<™ ™
numPtr++;

cout << "\nThe numbers in set backward are: \n":
for (count = 0; count < SIZE; count++){

numpPtr--; _
cout << *numPtr << " " The numbers in set are:
5101520 25303540

return O; The numbers in set backward are:
} 40 3530 2520 1510 5

25 Salisbury

4. Pointers as Function Parameters

= A pointer can be a parameter

= Works like reference variable to allow change to
argument from within function
= Requires:
1) asterisk * on parameter in prototype and heading
vold getNum(int *ptr); //ptr is pointer to an int
2) asterisk * in body to dereference the pointer
cin >> *ptr;
3) address as argument to the function

getNum (&num) ; //pass address of num to getNum

26

Salisbury

Reference Variable VS Pointer

= Reference variable as
parameter

int numl = 2, numZ = -3

.= Pointer as parameter

| temp = *x; |
I _ . I
B
LY T temp; |

}

int numl = 2, num2 = -3;

Salisbury

In-class practice

»= Recall the bubble sort algorithm in Module 5

= Use pointers as function parameters to
iImplement the bubbleSort () and swap ()

functions
= Test your code

28 Reference code: PtrBubbleSort.cpp Salisbury

5. Dynamic Memory Allocation

» Static memory allocation: the compilation
process creates an executable file in which the
memory requirements for each variable and
object are defined

* Dynamic memory allocation: A program can
allocate storage from additional memory
resource, heap, for a variable while it is
running

29 http://facuIty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/i8d¢pslbﬁny

Static Allocation VS Dynamic Allocation

Static Allocation Dynamic Allocation

» Performed at static or « Performed at dynamic or

compile time run time

« Assigned to run time « Assigned to heap (for
stack dynamic variables)

« Size must be knownat + Size may be unknown at
compile time compile time

* First in last out * No particular order of

assignment

« lItis bestif required size « Itis best if we don't know
of memory known in how much memory
advance require

30 https://www. researchgate.net/figure/Difference—between—static—and—dynamic—allocat@alfjgbﬁ@f};i66374

Dynamic Memory Allocation

= Allocate storage for variables while program
IS running
» Return address of newly allocated variable
» Use new operator to allocate memory:
double *dptr = nullptr;
dptr = new double;
» new returns address of memory location if it is
successful or 0 (nullptr) if not
» The returned address is stored in a pointer
» The memory allocated for the variable is on the
heap as opposed to the stack

Note: Pointers enable us to access and operate dynamically created variables

Salisbury

Dynamic Memory Allocation

* You can use new to dynamically allocate an array:

double *arrayPtr;

cout << "How many real numbers? ";
cin >> count;

arrayPtr = new double[count]; //count is a variable!

= You can use subscript or offset notation to access the
array elements.

for (int i1 = 0; 1 < count; i++)
arrayPtr[i] = 1 * 1i;
or
for (int 1 = 0; 1 < count; i++)
* (arrayPtr + 1) = 1 * i;

Note: If not enough memory available to allocate, C++ throws an exception
and terminates the program

* http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/isdéxibtrnl;

Stack VS Heap

= Stack contains “local” variables
» Created by standard declarations
*E.Qg..int i = 10; orchar b = 'B’;
» Get deleted from the stack as the function terminates.
This is called leaving “scope”
* Heap Is dynamic
» The total pool of unused system resources
» Exist outside the stack, reserved by the program
management within the OS kernel
» If you don’t free your memory, it's unusable until the
program terminates!

s http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/ibdéxihtmi;

Dynamic memory lifetime

void myFunction () { ' void myFunction () {
int arr[100]; E int* arr = new 1nt[100];
/oL)
return arr; E return arr;
})
What is the lifetime of arx? What is the lifetime of arx? Why?
why? The array will remain in place
The array does not exist | and reserved after the function
outside the function finishes

Probably have compiler warning The index operator (i.e. []) actually

The address returned will be does some pointer arithmetic

nonsense . Arr[i] actually means * (arr+1)

* http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/isdéxibtrnt;

Releasing Dynamic Memory

Use delete to free dynamic memory:
delete fptr; // Delete one element

Use delete [] to free dynamic array:

delete [] arrayPtr; // Delete an array
Only use delete with dynamic memory!
Failure to release dynamically allocated memory
can cause a program to have a memory leak.
Only delete pointers that created with new.
Otherwise, unexpected problems could result.

Salisbury

Example

#include <iostream>
#include <iomanip>
using namespace std;

int main () {
double *sales = nullptr, total = 0.0, average;
int numDays, count;

cout << "How many days do you want to process:";
cin >> numDays;

sales = new double[numDays];
cout << "Enter the sales amount for each day. \n";
for (count = 0; count < numDays; count++) {

cout << "Day " << (count + 1) << ": ";

cin >> sales|[count];

}

for (count
total +

0; count < numDays; count++)
sales[count];

average = total/numDays;
cout << fixed << showpoint << setprecision (2);
cout << "\nTotal sales: $" << total << endl;

cout << "Average sales: $" << average << endl;

delete [] sales;
sales = nullptr;

return Uy

© Salisbury

Example (cont'd)

= QOutput

How many days do you want to process:5

Enter the sales amount for each day.
Day 1: 898.63

Day 2: ©52.32
Day 3: 741.85
Day 4: 852.960
Day b5: 921.37

Total sales: $4067.13
Average sales: $813.43

37 Salisbury

In-class practice

= Dynamically create an integer array using
new operator

» Ask user input the number of elements and their
values

= Calculate and output the maximum value of
the array

» Release the allocated memory at the end of
your program

» Test your code

3 Reference code: MaxArray.cpp Salisbury

6. Returning Pointers from Functions

* Functions can return pointers

data type * function name (parameter list)

{
body of the function

}

= Example: return a pointer to locate the null
terminator that appears at the end of a string

char *findNull (char *str) {
char *ptr = str;
while (*ptr != "\0")
ptr++;
return ptr;

30 Salisbury

Variable-length array

* makeArray function creates a specific-length
array and return its address

int* makeArray (int len) {
int* myArr = new 1int[len];
for (int 1 = 0; 1 < len; i++){
*(myArr + 1) = 0;
}

return myArr;

40 http://facuIty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/i8d¢pslbﬁny

Example

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int *getRandomNumbers (int) ;

int main () {
int *numbers = nullptr;
numbers = getRandomNumbers (5) ;
for (int count = 0; count < 5; count++)
cout << numbers[count] << endl;
delete [] numbers;
numbers = nullptr;
return 0O;

int *getRandomNumbers (int num) {
int *arr = nullptr;
1f (num <= 0)
return nullptr;

arr = new int[num];
srand (time (0)); //Use time(0) as the seed of generator
for (int count = 0; count < num; count++)

arr[count] = rand();

return arr:

a Salisbury

Reading textbook
= Chapter 9

Salisbury

Reference

= The teaching materials of this course refer to:

» Professor Xiaohong (Sophie) Wang. COSC 120 teaching materials
« Salisbury University

» Textbook:

« Starting Out with C++: From Control Structures through Objects, by
Tony Gaddis, Pearson (9th Edition)

* |Instructor materials of the above textbook (All rights reserved)

& Salisbury

