
COSC 220: Computer Science II

Module 2
 Instructor:

Dr. Xiaohong (Sophie) Wang

(xswang@salisbury.edu)

Department of Mathematics & Computer Science

Salisbury University

Spring 2021

mailto:xswang@salisbury.edu

Pointers

1. Pointer Variables

2. Relationship between Arrays and Pointers

3. Pointer Arithmetic

4. Pointers as Function Parameters

5. Dynamic Memory Allocation

6. Returning Pointers from Functions

2

• Partial contents of this note refer to https://www.pearson.com/us/

• Copyright 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved

• Dissemination or sale of any part of this note is NOT permitted

Challenges

1. Pointer "seems" the most challenging concepts in

C/C++

2. "seems" means "it looks different, but it is not if you

pay attention to detailed concepts

3. The keys to understand it are:

i. understanding of variables and data types

ii. understanding of operators' context

For example, *, &, what do those operator do?

They mean different things depend on where they are used.

iii. understanding of static vs. dynamic concepts
3

Variable Review

1. What is a variable? A variable

• is a block of memory

• has an address (used to locate it in memory)

• has a name (used by a programmer to locate it in the

memory easily)

• has a restriction on its content (what type of information

are allowed to store in there)

• has a size (how big the block of memory is)

• has a set of operation rules (what operations are allowed

to performed on it)

4

Variable Review

2. When are the name, size, operation rules of a

variable defined?

• when a variable is defined, for example,

 int age;

 A block of memory (starts at location 10010000) now has a name

"age"

 The data type of the variable is "int"

 "int" determines the content of the block (integer value only), the size

of the block (4 bytes depends) and operations (+,-,/,*)

5

Age(10010000)

6

 Each variable is stored at a unique address

http://www.c-jump.com/bcc/c155c/MemAccess/MemAccess.html

Operator context

Operators mean different things depends where it is being used

• What is the meaning of "/"?

When you use it between two integer variables (or values)?

When you use it between two variables (or values) when one of them is not

integer?

 When you use it before or after another "/" or " * " ("//","/*", "*/")?

 What is the meaning of "*"

 When you use it between two variables of int, float, double (or numbers)?

 When you use it before or after "/" ("/*", "*/")?

 What is the meaning of "&"?

When you use it in the prototype or header of a function: void foo(int &x)?

When you use it as "&&" or "&": (age > 10 && age <=20 or x & y: x and y

are integer variables)

7

Big pictures about pointer

1. Pointer is a data type

2. When a variable is defined as a pointer variable of certain type:

 a block of memory is associated with this variable

 the content of the variable is the address to another memory location used to

store a value of that certain type)

 the size of the block is whatever the size to contain a memory address

 the set of operation rules to perform on a pointer variable: &, ++,--, *

3. To make things more complicated, "*" has different meanings when it is associated

with a pointer variable depending where it is being used

• int *ptr; or int* ptr; or int * ptr; // define a pointer variable "ptr"

• *ptr = 10; // put value from the rhs of the assignment operator (10) in pointee

memory. "*" mean dereference here

• cout << *ptr; // retrieve the value in the pointee (10). "*" mean dereference here

8

Where there is a pointer

variable, there has to be a

pointee of that pointer variable.

1. Pointer Variables

9

 Each variable is stored at a unique address

Question: The value of a variable can be accessed through variable name.

 How to access the address of a variable?

http://www.c-jump.com/bcc/c155c/MemAccess/MemAccess.html

Address Operator

10

 Use address operator & to get address of a

variable:
 int iii = 255;

 cout << &iii; // prints address 90000000

 // in hexadecimal

 A variable’s address is the address of the first byte

allocated to that variable

 Do not confuse address operator with reference
Address operator is used only with variable name

& symbol is used together with data type when defining

a reference variable

 void doubleInt(int &num){

 num *= 2

}

Pointer Variables

 Pointer variable : Often just called a pointer,
it's a variable that holds an address
 Itself is a variable

 Its value is the address of another variable. It
"points" to the data

https://www.geeksforgeeks.org/pointers-c-examples/

Something Like Pointers: Arrays

 When we pass an array as an argument to a function,
we actually pass the array’s beginning address
 const int SIZE = 5;

int numbers[SIZE] = {1, 2, 3, 4, 5};

showValues(numbers, SIZE);

The values parameter, in

the showValues function,

points to the numbers array.

Something Like Pointers: Reference Variables

 When we use reference variables. For example:

 Then call it with this code:

void getOrder(int &donuts) {

 cout << "How many doughnuts do you want? ";

 cin >> donuts;

}

int jellyDonuts;

getOrder(jellyDonuts);

The donuts parameter, in the

getOrder function, receives the

address of the jellyDonuts

variable (create an alias)

Pointer Variables

 Pointer variables are yet another way using a

memory address to work with a piece of data.

 Pointers are more "low-level" than arrays and

reference variables.

 Your code has to specify that the value should

be stored in the location referenced by the

pointer variable.

Pointer Variables

 Definition:

dataType is the data type that the pointer points to

 Example:

Read as: “intptr can hold the address of an int”

Spacing in definition does not matter:

dataType *pointer_name;

int *intptr;

int * intptr; // same as above

int* intptr; // same as above

Pointer Variables

 Assigning an address to a pointer variable:

Memory layout:

 It is a good habit to initialize pointer variables.

Using special value nullptr if initialization address

is unknown

nullptr represents address 0

num intptr

25 0x4a00

address of num: 0x4a00

int *intptr;

intptr = #

int *ptr = nullptr;

Example

The Indirection Operator

 The indirection operator (*) dereferences

a pointer

& : get the address of a variable

* : get the value at an address that the

pointer points to

Output 25.

int x = 25;

int *intptr = &x;

cout << *intptr << endl;

*intptr = 100;

cout << *intptr << endl;

Output 100.

2. Relationship between Arrays and Pointers

19

 Array name is starting address of array

 int vals[] = {4, 7, 11};

 cout << vals; // displays 0x4a00

 cout << vals[0]; // displays 4

4 7 11

starting address of vals: 0x4a00

Arrays and Pointers

 Array name can be used as a constant

pointer:

 int vals[] = {4, 7, 11};

 cout << *vals; // displays 4

 Pointer can be used as an array name:

 int *valptr = vals;

cout << valptr[0]; // displays 4

cout << valptr[1]; // displays 7

cout << valptr[2]; // displays 11

Pointers in Expressions

Given:

What is valptr + 1?

 It means (address in valptr) + (1 * size of an int)

 It points to the next element in the array

Must use () as shown in the expressions

Question: What is the difference between *(valptr + 1) and *valptr + 1 ?

cout << *(valptr+1); //displays 7

cout << *(valptr+2); //displays 11

int vals[]={4,7,11}, *valptr;

valptr = vals;

Array Access

 Array elements can be accessed in many ways:

Array access method Example

array name and [index] vals[2] = 17;

pointer to array and [index] valptr[2] = 17;

array name and offset

arithmetic

*(vals + 2) = 17;

pointer to array and offset

arithmetic

*(valptr + 2) = 17;

Note: No bounds checking performed on array access, whether using array name or a pointer

Example
#include <iostream>
using namespace std;

int main(){
 const int NUM_COINS = 5;
 double coins[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};
 double *doublePtr; // Pointer to a double
 int count;

 doublePtr = coins;

 cout << "Output values using index with pointer: \n";
 for (count = 0; count < NUM_COINS; count++){
 cout << doublePtr[count] << " ";
 }
 cout << "\nOutput values using offset with array name: \n";
 for (count = 0; count < NUM_COINS; count++){
 cout << *(coins + count) << " ";
 }
 return 0;
}

Output values using index with pointer:

0.05 0.1 0.25 0.5 1

Output values using offset with array name:

0.05 0.1 0.25 0.5 1

3. Pointer Arithmetic

 Operations on pointer variables:

Operation Example
int vals[]={4,7,11};

int *valptr = vals;

++, -- valptr++; // points at 7

valptr--; // now points at 4

+, - (pointer and int) cout << *(valptr + 2); // 11

+=, -= (pointer
and int)

valptr = vals; // points at 4

valptr += 2; // points at 11

- (pointer from pointer) cout << valptr–val; // difference

//(number of ints) between valptr

// and val

Example

25

#include <iostream>
using namespace std;

int main(){
 const int SIZE = 8;
 int set[SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
 int *numPtr = nullptr;
 int count;

 numPtr = set;

 cout << "The numbers in set are: \n";
 for (count = 0; count < SIZE; count++){
 cout << *numPtr << " ";
 numPtr++;
 }
 cout << "\nThe numbers in set backward are: \n";
 for (count = 0; count < SIZE; count++){
 numPtr--;
 cout << *numPtr << " ";
 }
 return 0;
}

The numbers in set are:

5 10 15 20 25 30 35 40

The numbers in set backward are:

40 35 30 25 20 15 10 5

4. Pointers as Function Parameters

26

 A pointer can be a parameter

 Works like reference variable to allow change to

argument from within function

 Requires:

1) asterisk * on parameter in prototype and heading

 void getNum(int *ptr); //ptr is pointer to an int

2) asterisk * in body to dereference the pointer

 cin >> *ptr;

3) address as argument to the function

 getNum(&num); //pass address of num to getNum

Reference Variable VS Pointer

 Reference variable as

parameter

 Pointer as parameter

void swap(int &x, int &y)

{

 int temp;

 temp = x;

 x = y;

 y = temp;

}

int num1 = 2, num2 = -3;

swap(num1, num2);

void swap(int *x, int *y)

{

 int temp;

 temp = *x;

 *x = *y;

 *y = temp;

}

int num1 = 2, num2 = -3;

swap(&num1, &num2);

In-class practice

 Recall the bubble sort algorithm in Module 5

 Use pointers as function parameters to
implement the bubbleSort() and swap()

functions

 Test your code

28 Reference code: PtrBubbleSort.cpp

5. Dynamic Memory Allocation

29

 Static memory allocation: the compilation

process creates an executable file in which the

memory requirements for each variable and

object are defined

 Dynamic memory allocation: A program can

allocate storage from additional memory

resource, heap, for a variable while it is

running

http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/index.html

Static Allocation VS Dynamic Allocation

30

Static Allocation Dynamic Allocation

• Performed at static or

compile time

• Performed at dynamic or

run time

• Assigned to run time

stack

• Assigned to heap (for

dynamic variables)

• Size must be known at

compile time

• Size may be unknown at

compile time

• First in last out • No particular order of

assignment

• It is best if required size

of memory known in

advance

• It is best if we don't know

how much memory

require

https://www.researchgate.net/figure/Difference-between-static-and-dynamic-allocation_fig2_265166374

Dynamic Memory Allocation

 Allocate storage for variables while program

is running

 Return address of newly allocated variable

 Use new operator to allocate memory:

 double *dptr = nullptr;

 dptr = new double;

new returns address of memory location if it is

successful or 0 (nullptr) if not

The returned address is stored in a pointer

The memory allocated for the variable is on the

heap as opposed to the stack

Note: Pointers enable us to access and operate dynamically created variables

Dynamic Memory Allocation

32

 You can use new to dynamically allocate an array:

double *arrayPtr;

cout << "How many real numbers? ";

cin >> count;

arrayPtr = new double[count]; //count is a variable!

 You can use subscript or offset notation to access the
array elements.

 for (int i = 0; i < count; i++)
 arrayPtr[i] = i * i;

or

 for (int i = 0; i < count; i++)

 *(arrayPtr + i) = i * i;

Note: If not enough memory available to allocate, C++ throws an exception

and terminates the program

http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/index.html

Stack VS Heap

 Stack contains “local” variables

Created by standard declarations

• E.g.: int i = 10; or char b = ‘B’;

Get deleted from the stack as the function terminates.

This is called leaving “scope”

 Heap is dynamic

The total pool of unused system resources

Exist outside the stack, reserved by the program

management within the OS kernel

 If you don’t free your memory, it’s unusable until the

program terminates!

33 http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/index.html

Dynamic memory lifetime

34

void myFunction(){

 int arr[100];

 // . . .

 return arr;

}

• What is the lifetime of arr?

Why?

• The array does not exist

outside the function

• Probably have compiler warning

• The address returned will be

nonsense

void myFunction(){

 int* arr = new int[100];

 // . . .

 return arr;

}

• What is the lifetime of arr? Why?

• The array will remain in place

and reserved after the function

finishes

• The index operator (i.e. []) actually

does some pointer arithmetic

• Arr[i] actually means *(arr+i)

 http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/index.html

Releasing Dynamic Memory

 Use delete to free dynamic memory:

 delete fptr; // Delete one element

 Use delete [] to free dynamic array:

 delete [] arrayPtr; // Delete an array

 Only use delete with dynamic memory!

 Failure to release dynamically allocated memory

can cause a program to have a memory leak.

 Only delete pointers that created with new.

Otherwise, unexpected problems could result.

Example

36

#include <iostream>
#include <iomanip>
using namespace std;

int main(){
 double *sales = nullptr, total = 0.0, average;
 int numDays, count;

 cout << "How many days do you want to process:";
 cin >> numDays;
 sales = new double[numDays];
 cout << "Enter the sales amount for each day. \n";
 for (count = 0; count < numDays; count++){
 cout << "Day " << (count + 1) << ": ";
 cin >> sales[count];
 }

 for (count = 0; count < numDays; count++)
 total += sales[count];

 average = total/numDays;

 cout << fixed << showpoint << setprecision(2);
 cout << "\nTotal sales: $" << total << endl;
 cout << "Average sales: $" << average << endl;

 delete [] sales;
 sales = nullptr;
 return 0;
}

Example (cont’d)

 Output

37

How many days do you want to process:5

Enter the sales amount for each day.

Day 1: 898.63

Day 2: 652.32

Day 3: 741.85

Day 4: 852.96

Day 5: 921.37

Total sales: $4067.13

Average sales: $813.43

In-class practice

 Dynamically create an integer array using
new operator

Ask user input the number of elements and their

values

 Calculate and output the maximum value of

the array

 Release the allocated memory at the end of

your program

 Test your code

38 Reference code: MaxArray.cpp

6. Returning Pointers from Functions

 Functions can return pointers

 Example: return a pointer to locate the null

terminator that appears at the end of a string

39

data_type * function_name(parameter list)

{

 body of the function

}

char *findNull(char *str){

 char *ptr = str;

 while (*ptr != '\0')

 ptr++;

 return ptr;

}

Variable-length array

 makeArray function creates a specific-length

array and return its address

40 http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/index.html

int* makeArray(int len){

 int* myArr = new int[len];

 for (int i = 0; i < len; i++){

 *(myArr + i) = 0;

 }

 return myArr;

}

Example

41

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
int *getRandomNumbers(int);

int main(){
 int *numbers = nullptr;
 numbers = getRandomNumbers(5);
 for (int count = 0; count < 5; count++)
 cout << numbers[count] << endl;
 delete [] numbers;
 numbers = nullptr;
 return 0;
}

int *getRandomNumbers(int num){
 int *arr = nullptr;
 if (num <= 0)
 return nullptr;
 arr = new int[num];
 srand(time(0)); //Use time(0) as the seed of generator
 for (int count = 0; count < num; count++)
 arr[count] = rand();
 return arr;
}

Reading textbook

 Chapter 9

42

Reference

 The teaching materials of this course refer to:

 Professor Xiaohong (Sophie) Wang. COSC 120 teaching materials

• Salisbury University

 Textbook:

• Starting Out with C++: From Control Structures through Objects, by

Tony Gaddis, Pearson (9th Edition)

• Instructor materials of the above textbook (All rights reserved)

43

