
Main Index Contents 1

Algorithm Analysis

 What is an algorithm?

– An algorithm is a step-by-step procedure for

accomplishing some task.

– An algorithm can be given in many ways. For

example, it can be written down in English (or

French, or any other ``natural'' language).

– However, we are interested in algorithms which

have been precisely specified using an appropriate

mathematical formalism--such as a programming

language.

Master Index.ppt#2. Main Index

Main Index Contents 2

 What do we mean by analyzing one?

– Study the specification of the algorithm and to draw

conclusions about how the implementation of that algorithm--

the program--will perform in general.

 What can we analyze?

– determine the running time of a program as a function of its

inputs;

– determine the total or maximum memory space needed;

– determine the total size of the program code;

– determine whether the program correctly computes the desired

result;

– determine the complexity of the program--e.g., how easy is it to

read, understand, and modify; and,

– determine the robustness of the program--e.g., how well does

it deal with unexpected or erroneous inputs?

Master Index.ppt#2. Main Index

Main Index Contents 3

 In this class, we are concerned primarily with

– Running time (time complexity)

– Memory space (space complexity)

 Many factors that affect the running time of a program:

– the algorithm itself,

– the input data, and

– the computer system used to run the program.

 the hardware:

– processor used (type and speed),

– memory available (cache and RAM), and

– disk available;

 the programming language in which the algorithm is specified;

 the language compiler/interpreter used; and

 the computer operating system software.

Master Index.ppt#2. Main Index

Main Index Contents 4

A Detailed Model of the Computer

 We consider the implementation of the C++

programming language as a kind a ``virtual C++

machine''

Master Index.ppt#2. Main Index

Main Index Contents 5

The Basic Axioms

 Axiom 1

 The time required to fetch an integer operand

from memory is a constant, Tfetch, and the time

required to store an integer result in memory is

a constant, Tstore

 Axiom 2

 The times required to perform elementary

operations on integers, such as addition, T+,

subtraction, T- multiplication, Tx division, T/ and

comparison, T<> are all constants.

Master Index.ppt#2. Main Index

Main Index Contents 6

Examples

 Running time for

 y = y + 1;

 is

 2Tfetch + Tstore + T+

 Running time for

 y += 1;

 ++y;

 y++;

 is also 2Tfetch + Tstore + T+/+=/++

Master Index.ppt#2. Main Index

Main Index Contents 7

The Basic Axioms
 Axiom 3

 The time required to call a function is a constant, Tcall,
and the time required to return from a function is a
constant, Treturn

– When a function is called, certain housekeeping operations
need to be performed.
 saving the return address so that program execution can resume

at the correct place after the call,

 saving the state of any partially completed computations so that
they may be resumed after the call,

 the allocation of a new execution context (stack frame or
activation record).

– Conversely, on the return from a function, all of this work is
undone.

 Axiom 4

 The time required to pass an integer argument to a
function or procedure is the same as the time required
to store an integer in memory, Tstore.

Master Index.ppt#2. Main Index

Main Index Contents 8

Examples

 Running time for

 y = f(x)

 is

 Tfetch + 2Tstore + Tcall + Treturn + Tf(x)

Master Index.ppt#2. Main Index

Main Index Contents 9

Running time

statement time code

3
result = 0

4a
i = 1

4b
i <= n

4c
++i

5
result += i

6
return result

TOTAL

Master Index.ppt#2. Main Index

Main Index Contents 10

 T(n) = t1 + t2*n

Where

Master Index.ppt#2. Main Index

Main Index Contents 11

 Axiom 5.

 The time required for the address calculation
implied by an array subscripting operation,
e.g., a[i], is a constant, T[.] . This time does not
include the time to compute the subscript
expression, nor does it include the time to
access (i.e., fetch or store) the array element.

Thus the running for

 y = a[i]

is

 3Tfetch + T[.] + Tstore

Master Index.ppt#2. Main Index

Main Index Contents 12

A Simplified Model of the Computer

 The detailed model of the computer given in the

previous section is based on a number of different

timing parameters (Tfetch, Tstore, Tcall ,Treturn, Tf(x) …)

 Keeping track of the all of the parameters during the

analysis is rather burdensome

 In a real machine, each of these parameters will be a

multiple of the basic clock cycle of the machine

(typically between 2 and 10 ns.), T.

 For example,

 Tfetch = k * T

Master Index.ppt#2. Main Index

Main Index Contents 13

A Simplified Model of the Computer

 The simplified model eliminates all of the arbitrary

timing parameters in the detailed model.

 Two simplifying assumptions:

– All timing parameters are expressed in units of clock cycles. In

effect, T=1.

– The proportionality constant, k, for all timing parameters is

assumed to be the same: k=1.

 The effect of these two assumptions is that we no

longer need to keep track of the various operations

separately.

 To determine the running time of a program, we simply

count the total number of operations (or cycles).

Master Index.ppt#2. Main Index

Main Index Contents 14

Running time

statement time code

3
result = 0

4a
i = 1

4b
i <= n

4c
++i

5
result += i

6
return result

TOTAL

Master Index.ppt#2. Main Index

Main Index Contents 15

Running time

 statement time code

3 2
result = 0

4a 2
i = 1

4b 3*(n+1)
i <= n

4c 4*n
++i

5 4*n
result += i

6 2
return result

TOTAL 11*n+9

Master Index.ppt#2. Main Index

Main Index Contents 16

 T(n) = t1 + t2*n

Where

are replaced by

 t1 = 9

 t2 = 11

 T(n) = 9 + 11*n

Master Index.ppt#2. Main Index

Main Index Contents 17

In class exercise (I)

 Write a program to calculate and return the sum of
a 1-dimentional array of n.

 Use the detailed model to find out the running time
of the above algorithm: T(n)

 Use the simplified model to find out the simplified
running time T(n)

Master Index.ppt#2. Main Index

Main Index Contents 18

statement detailed model simple big oh

model

3 5 O(1)

4a 4 O(1)

4b 3n+3 O(n)

4c 4n O(n)

5 9n O(n)

6 2 O(1)

TOTAL 16n+14 O(n)

Master Index.ppt#2. Main Index

Main Index Contents 19

statement time

3

4a

4b

4c

5

6

7

Master Index.ppt#2. Main Index

Main Index Contents 20

Asymptotic Notation

 Considering two algorithms, A and B, for

solving a given problem.

 The running times of each of the algorithms are

determined to be TA(n) and TB(n), where n is

the size of the problem

 Can we simply compare TA(n) and TB(n) to

determine which algorithm is better?

Master Index.ppt#2. Main Index

Main Index Contents 21

 No.
– Because it is not true that one of the functions is

less than or equal the other over the entire range of
problem sizes

– the comparison result might be determined by the
problem size n

– And we do not always have knowledge of problem
size n beforehand

 Here, we consider the asymptotic behavior of
the two functions for very large problem sizes.

Master Index.ppt#2. Main Index

Main Index Contents

Asymptotic Analysis

 Asymptotic analysis

– based on the idea that as the problem size grows,

the complexity will eventually settle down to a

proportionality to some known and simple function.

 Three asymptotic notations

– Big O-Notation (upper bound)

– Big Ω-Notation (lower bound)

– Big Ө-Notation (tight bound)

22

Master Index.ppt#2. Main Index

Main Index Contents

Asymptotic Notations (Big O)
Big O-Notation

 For a given function g(n), O(g (n)) denote the set of
functions such that,

 O(g(n))= {f (n) | if and only if there exist positive constant c and n0
such that 0  f (n)  cg (n) for all n  n0}

 We write

 f(n) = O (g(n))

 indicates a function f (n) is a member of O (g(n)).

 g (n) is asymptotically upper bound for f (n).

23

Want g(n) to be

simple.

Master Index.ppt#2. Main Index

Main Index Contents

Asymptotic Notations (Big O)

24

 Big O notation characterizes the asymptotic behavior

of f(n) by providing an upper bound c*g(n)

on the rate at which f(n) grows as n >=nO.

Master Index.ppt#2. Main Index

Main Index Contents

Big-Oh Notation: Asymptotic Upper
Bound

 f(n) = O(g(n))
– if f(n) <= c*g(n) for all n > n0, where c & n0 are constants > 0

n

c*g(n)

f(n)

n0

– Example: T(n) = 2n + 5 is O(n). Why?

– 2n+5 <= 3n, for n >= 5 and c = 3

– T(n) = 5*n2 + 3*n + 15 is O(n2). Why?

– 5*n2 + 3*n + 15 <= 6*n2, for n >= 6 and c = 6

Master Index.ppt#2. Main Index

Main Index Contents 26

Ex) Show f(n) = 8n+128 = O(n2)

Sol)

Based on the Big-O notation, we need to find an

positive integer nO and a constant c>0 such that for

all integers n >=nO, f(n)<=c*(n2).

Master Index.ppt#2. Main Index

Main Index Contents 27

Ex) Show f(n) = 8n+128 = O(n2)

Sol)

Let us choose c=1

 f(n) <= c*n2 ===> f(n) <= n2
 ===> 8n + 128 <= n2

 ===> 0<= n2 – 8n – 128

 ===> 0<= (n-16)*(n+18)
– We know that n+18 > 0 for all n.

– To make n – 16 >= 0, i.e., n >= 16,

– So if we let no = 16, then we have n>= no

Master Index.ppt#2. Main Index

Main Index Contents 28

 Hence when c = 1 and no = 16,

 f(n) <= c* n2

 for all integers n >=nO

 According to the big O definition, we have

 f(n)= 8n+128 =O(n2)

Master Index.ppt#2. Main Index

Main Index Contents 29

Another Example

Ex) Show f(n)=8n+128 = O(n)

According to definition, we need to find an

integer nO>0 and a constant c>0 such that for all

integers n >=nO, f(n)<=c*n.

Master Index.ppt#2. Main Index

Main Index Contents 30

 Let us choose c=9

 f(n) <= c*n ===> f(n) <= 9*n

 ===> 8n + 128 <= 9*n

 ===> 0<= n – 128

 ===> 128<= n

 Let no = 128

 Therefore when we have c = 9 and no = 128,

 f(n) <= c*n

 for all integers n >=nO

 According to big O definition, we have

 f(n)=O(n)

Master Index.ppt#2. Main Index

Main Index Contents 31

Master Index.ppt#2. Main Index

Main Index Contents 32

Tight Big O Bounds

 Big O notation characterizes the asymptotic

behavior of a function by providing an upper

bound on the rate at which the function grows

as n gets large.

 Unfortunately, the notation does not tell us how

close the actual behavior of the function is to

the bound. i.e., the bound might be very close

(tight) or it might be overly conservative

(loose).

 When we use Big O analysis, we implicitly

agree that the function we choose is the

smallest one which still satisfies the definition.

Master Index.ppt#2. Main Index

Main Index Contents

Asymptotic Notations (Big O)
Ex) Show that f(n) = 17n2 – 5 = O(n2)

Sol)

 Based on big-O notation, we need find two

integer c and n0 such that

 17n2 – 5  c n2 for all n  n0

 With c = 17 and n0 = 1

 17n2 – 5  17 n2 for all n  1

  17n2 – 5 = O(n2)

33

Master Index.ppt#2. Main Index

Main Index Contents

Asymptotic Notations (Big O)
Ex) Show that f(n) = 35n3 + 100 = O(n3)

Sol)

 Based on the Big-O notation, we need find two

integer c and n0 such that

 35n3 + 100  c n3 for all n  n0

 With c = 36 and n0 = 5

 35n3 + 100  36 n3 for all n  5

  35n3 + 100 = O(n3)

34

Master Index.ppt#2. Main Index

Main Index Contents

Asymptotic Notations (Big O)
Ex) Show f(n) = 6  2n + n2 = O(2n)

Sol)

 Based on the Big-O notation, we need find two

integer c and n0 such that

 6  2n + n2  c  2n for all n  n0

 With c = 7 and n0 = 5

 6  2n + n2  7  2n for all n  5

  6  2n + n2 = O(2n)

35

Master Index.ppt#2. Main Index

Main Index Contents 36

Conventions for Writing Big O Expressions

 When writing big O expressions to drop all but the most
significant terms.

 O(n2 + n*log(n) + n)

 is replaced by

 O(n2)

 Drop constant coefficients.

 O(3* n2)

 is replaced by

 O(n2)

 Use 1 to represent constant

 O(1024)

 is replaced by

 O(1)

 If we have a tight bound, use it.

Master Index.ppt#2. Main Index

Main Index Contents

Big O related theorems

 Theorem # 1 and proof

 Theorem # 2 and proof

 Theorem # 3

 Theorem # 4

37

Master Index.ppt#2. Main Index

Main Index Contents

Common Functions

Name Big-O Comment

Constant O(1) Can’t beat it!

Log log O(loglogN) Extrapolation search

Logarithmic O(logN) Typical time for good searching
algorithms

Linear O(N) This is about the fastest that an
algorithm can run given that we need
O(n) just to read the input

N logN O(NlogN) Most sorting algorithms

Quadratic O(N2) Acceptable when the data size is
small (N<10000)

Cubic O(N3) Acceptable when the data size is
small (N<1000)

Exponential O(2N) Only good for really small input sizes
(n<=20)

Master Index.ppt#2. Main Index

Main Index Contents

Asymptotic Complexity

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Master Index.ppt#2. Main Index

Main Index Contents

Asymptotic Complexity

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Master Index.ppt#2. Main Index

Main Index Contents

Asymptotic Complexity

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Master Index.ppt#2. Main Index

Main Index Contents

Asymptotic Complexity

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Master Index.ppt#2. Main Index

Main Index Contents

Asymptotic Complexity

1

10

100

1000

10000

100000

1000000

10000000

1 4 16 64 256 1024 4096 16384 65536

Guess

the

curves!

Master Index.ppt#2. Main Index

Main Index Contents

Tips to guide your intuition:

 Think of O(g(N)) as “greater than or equal to” f(N)

– Upper bound: “grows faster than or same rate as” f(N)

 Think of Ω(g(N)) as “less than or equal to” f(N)

– Lower bound: “grows slower than or same rate as” f(N)

 Think of Θ(g(N)) as “equal to” f(N)

– “Tight” bound: same growth rate

(True for large N and ignoring constant factors)

Master Index.ppt#2. Main Index

