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Algorithm Analysis 

 What is an algorithm? 

 

– An algorithm is a step-by-step procedure for 

accomplishing some task.  

– An algorithm can be given in many ways. For 

example, it can be written down in English (or 

French, or any other ``natural'' language).  

– However, we are interested in algorithms which 

have been precisely specified using an appropriate 

mathematical formalism--such as a programming 

language.  
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 What do we mean by analyzing one?  

– Study the specification of the algorithm and to draw 

conclusions about how the implementation of that algorithm--

the program--will perform in general.  

 What can we analyze?  

– determine the running time of a program as a function of its 

inputs; 

– determine the total or maximum memory space needed; 

– determine the total size of the program code; 

– determine whether the program correctly computes the desired 

result; 

– determine the complexity of the program--e.g., how easy is it to 

read, understand, and modify; and, 

– determine the robustness of the program--e.g., how well does 

it deal with unexpected or erroneous inputs?  
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 In this class, we are concerned primarily with  

– Running time (time complexity) 

– Memory space (space complexity) 

 Many factors that affect the running time of a program: 

– the algorithm itself,  

– the input data, and  

– the computer system used to run the program.   

 the hardware:  

– processor used (type and speed), 

– memory available (cache and RAM), and 

– disk available;  

 the programming language in which the algorithm is specified; 

 the language compiler/interpreter used; and 

 the computer operating system software.  
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A Detailed Model of the Computer 

 We consider the implementation of the C++ 

programming language as a kind a ``virtual C++ 

machine''  
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The Basic Axioms 

 Axiom  1 

 The time required to fetch an integer operand 

from memory is a constant, Tfetch, and the time 

required to store an integer result in memory is 

a constant, Tstore 

 Axiom 2 

 The times required to perform elementary 

operations on integers, such as addition, T+, 

subtraction, T- multiplication, Tx division, T/ and 

comparison, T<> are all constants.  
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Examples 

 Running time for  

 y = y + 1;  

    is  

 2Tfetch + Tstore + T+ 

 

 Running time for  

 y += 1; 

    ++y; 

    y++; 

  

    is also 2Tfetch + Tstore + T+/+=/++ 
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The Basic Axioms 
 Axiom  3 

 The time required to call a function is a constant, Tcall, 
and the time required to return from a function is a 
constant, Treturn 

– When a function is called, certain housekeeping operations 
need to be performed.  
 saving the return address so that program execution can resume 

at the correct place after the call,  

 saving the state of any partially completed computations so that 
they may be resumed after the call,  

 the allocation of a new execution context (stack frame  or 
activation record ).  

– Conversely, on the return from a function, all of this work is 
undone.  

 Axiom 4 

 The time required to pass an integer argument to a 
function or procedure is the same as the time required 
to store an integer in memory, Tstore.  
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Examples 

 Running time for  

 y = f(x)  

    is  

 Tfetch + 2Tstore + Tcall + Treturn + Tf(x) 
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Running time 

 
   

 

statement  time  code 

3                           
result = 0 

4a                            
i = 1  

4b                                             
i <= n  

4c                                                 
++i  

5                                                 
result += i  

6                              
return result  

TOTAL                                                              

                                                             

Master Index.ppt#2. Main Index


Main Index Contents 10 

 T(n) = t1 + t2*n 

 

 

Where  
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 Axiom 5. 

 The time required for the address calculation 
implied by an array subscripting operation, 
e.g., a[i], is a constant, T[.] . This time does not 
include the time to compute the subscript 
expression, nor does it include the time to 
access (i.e., fetch or store) the array element.  

  
Thus the running for  

 y = a[i] 

is  

 3Tfetch + T[.] + Tstore 
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A Simplified Model of the Computer 

 The detailed model of the computer given in the 

previous section is based on a number of different 

timing parameters (Tfetch, Tstore, Tcall ,Treturn, Tf(x)  … ) 

  

 Keeping track of the all of the parameters during the 

analysis is rather burdensome 

 

 In a real machine, each of these parameters will be a 

multiple of the basic clock cycle of the machine 

(typically between 2 and 10 ns.), T. 

    For example,  

 Tfetch = k * T 
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A Simplified Model of the Computer 

 The simplified model eliminates all of the arbitrary 

timing parameters in the detailed model.  

 Two simplifying assumptions:  

– All timing parameters are expressed in units of clock cycles. In 

effect, T=1. 

– The proportionality constant, k, for all timing parameters is 

assumed to be the same: k=1.  

 

 The effect of these two assumptions is that we no 

longer need to keep track of the various operations 

separately.  

 To determine the running time of a program, we simply 

count the total number of operations ( or cycles).  
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Running time 

 
   

 

statement  time  code 

3                           
result = 0 

4a                            
i = 1  

4b                                             
i <= n  

4c                                                 
++i  

5                                                 
result += i  

6                              
return result  

TOTAL                                                              
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Running time 

 
   

 statement  time  code 

3             2              
result = 0 

4a            2                
i = 1  

4b                      3*(n+1)                        
i <= n  

4c                         4*n                                 
++i  

5                         4*n                                 
result += i  

6              2                      
return result  

TOTAL            11*n+9            

                                                             

Master Index.ppt#2. Main Index


Main Index Contents 16 

 T(n) = t1 + t2*n 

  

Where 

 

 

 

are replaced by  

 

  t1 = 9 

 

  t2 = 11 

 

  T(n) = 9 + 11*n 
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In class exercise (I) 

 Write a program to calculate and return the sum of 
a 1-dimentional array of n.  

 

 Use the detailed model to find out the running time 
of the above algorithm: T(n) 

 

 Use the simplified model to find out the simplified 
running time T(n) 

 

  

Master Index.ppt#2. Main Index


Main Index Contents 18 

statement  detailed model  simple  big oh 

model  

3  5  O(1)  

4a  4  O(1)  

4b  3n+3  O(n)  

4c  4n  O(n)  

5  9n  O(n)  

6  2  O(1)  

TOTAL  16n+14  O(n)  
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statement  time  

3  

4a  

4b  

4c  

5  

6  

7  
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Asymptotic Notation 

 Considering two algorithms, A and B, for 

solving a given problem.  

 The running times of each of the algorithms are 

determined to be TA(n) and TB(n), where n is 

the size of the problem 

 

 Can we simply compare TA(n) and TB(n) to 

determine which algorithm is better? 
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 No. 
– Because it is not true that one of the functions is 

less than or equal the other over the entire range of 
problem sizes   

 

– the comparison result might be determined by the 
problem size n 

 

– And we do not always have knowledge of problem 
size n beforehand 

 

 Here, we consider the asymptotic behavior of 
the two functions for very large problem sizes.  
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Asymptotic Analysis 

 Asymptotic analysis 

– based on the idea that as the problem size grows, 

the complexity will eventually settle down to a 

proportionality to some known and simple function. 

 

 Three asymptotic notations 

– Big O-Notation (upper bound)  

 

– Big Ω-Notation (lower bound) 

 

– Big Ө-Notation (tight bound) 
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Asymptotic Notations (Big O) 
Big O-Notation 

 

 For a given function g(n),  O(g (n)) denote the set of 
functions such that,  

  

     O(g(n))= {f (n) | if and only if there exist positive constant c and n0 
such that 0  f (n)   cg (n) for all n  n0} 

 

 We write  

 f(n) = O (g(n))  

      indicates a function f (n) is a member of O (g(n)).  

 

 g (n) is asymptotically upper bound for f (n). 
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Want g(n) to be 

simple. 
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Asymptotic Notations (Big O) 
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 Big O notation characterizes the asymptotic behavior  

of f(n) by providing an upper bound c*g(n)  

on the rate at which f(n) grows as n >=nO. 
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Big-Oh Notation: Asymptotic Upper 
Bound 

 f(n) = O(g(n))  
– if f(n) <= c*g(n) for all n > n0, where c & n0 are constants > 0  

n 

c*g(n) 

f(n) 

n0 

– Example: T(n) = 2n + 5 is O(n). Why? 

– 2n+5 <= 3n, for n >= 5 and c = 3  

– T(n) = 5*n2 + 3*n + 15 is O(n2). Why? 

– 5*n2 + 3*n + 15 <= 6*n2, for n >= 6 and c = 6 
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Ex) Show f(n) = 8n+128 = O(n2) 

Sol)   

Based on the Big-O notation, we need to find an 

positive integer  nO and a constant c>0 such that for 

all integers n >=nO, f(n)<=c*(n2).  
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Ex) Show f(n) = 8n+128 = O(n2) 

Sol)   

Let us choose c=1  

  f(n) <= c*n2   ===>    f(n) <= n2           
       ===>  8n + 128 <= n2 

                        ===>  0<= n2 – 8n – 128  

                        ===>  0<= (n-16)*(n+18) 
–    We know that n+18 > 0 for all n. 

–    To make n – 16 >= 0, i.e., n >= 16,  

–    So if we let no  = 16, then we have n>= no  
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 Hence when c = 1 and no = 16,  

  

   f(n) <= c* n2 

   for all integers n >=nO 

 

 According to the big O definition, we have 

  

    f(n)= 8n+128 =O(n2) 
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Another Example 

Ex) Show f(n)=8n+128 = O(n)  

 

According to definition, we need to find an 

integer  nO>0 and a constant c>0 such that for all 

integers n >=nO, f(n)<=c*n.  
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 Let us choose c=9 

       f(n) <= c*n    ===>    f(n) <= 9*n 

                 ===>  8n + 128 <= 9*n 

                             ===>  0<= n  – 128  

                             ===>  128<= n 

   Let no  = 128  

 

 Therefore when we have c = 9 and no = 128,  

  

    f(n) <= c*n 

 

    for all integers n >=nO 

 

 According to big O definition, we have 

  

    f(n)=O(n) 
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Tight Big O Bounds 

 Big O notation characterizes the asymptotic 

behavior of a function by providing an upper 

bound on the rate at which the function grows 

as n gets large.  

 Unfortunately, the notation does not tell us how 

close the actual behavior of the function is to 

the bound. i.e., the bound might be very close 

(tight) or it might be overly conservative 

(loose).  

 When we use Big O analysis, we implicitly 

agree that the function we choose is the 

smallest one which still satisfies the definition. 
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Asymptotic Notations (Big O) 
Ex) Show that f(n) = 17n2 – 5 = O(n2) 

Sol) 

 Based on big-O notation, we need find two 

integer c and n0 such that  

  17n2 – 5  c n2 for all n  n0 

 With c = 17 and n0 = 1  

           17n2 – 5  17 n2 for all n  1 

   17n2 – 5 = O(n2) 
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Asymptotic Notations (Big O) 
Ex) Show that f(n) = 35n3 + 100 = O(n3) 

Sol) 

 

 Based on the Big-O notation, we need find two 

integer c and n0 such that  

  35n3 + 100  c n3 for all n  n0 

 With c = 36 and n0 = 5  

         35n3 + 100  36 n3 for all n  5 

   35n3 + 100 = O(n3) 
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Asymptotic Notations (Big O) 
Ex) Show f(n) = 6  2n + n2 = O(2n) 

Sol) 

 

 Based on the Big-O notation, we need find two 

integer c and n0 such that  

  6  2n + n2  c  2n for all n   n0  

 With c = 7 and n0 = 5  

 6  2n + n2  7  2n for all n  5 

   6  2n + n2 = O(2n) 
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Conventions for Writing Big O Expressions 

 When writing big O expressions to drop all but the most 
significant terms.  

   O(n2 + n*log(n) + n) 

   is replaced by 

      O(n2) 

 Drop constant coefficients.  

     O(3* n2) 

      is replaced by 

        O(n2) 

 Use 1 to represent constant 

     O(1024) 

      is replaced by 

        O(1) 

 If we have a tight bound, use it. 
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Big O related theorems 

 Theorem # 1 and proof 

 Theorem # 2 and proof 

 Theorem # 3 

 Theorem # 4 
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Common Functions 

Name Big-O Comment 

Constant O(1) Can’t beat it! 

Log log O(loglogN) Extrapolation search 

Logarithmic O(logN) Typical time for good searching 
algorithms 

Linear O(N) This is about the fastest that an 
algorithm can run given that we need 
O(n) just to read the input 

N logN O(NlogN) Most sorting algorithms 

Quadratic O(N2) Acceptable when the data size is 
small (N<10000) 

Cubic O(N3) Acceptable when the data size is 
small (N<1000) 

Exponential O(2N) Only good for really small input sizes 
(n<=20) 
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Asymptotic Complexity 
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f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂
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Asymptotic Complexity 
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Asymptotic Complexity 
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Asymptotic Complexity 
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Asymptotic Complexity 
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Guess 

the 

curves! 
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Tips to guide your intuition: 

 Think of O(g(N)) as “greater than or equal to” f(N) 

– Upper bound: “grows faster than or same rate as” f(N) 

 

 Think of Ω(g(N)) as “less than or equal to” f(N) 

–  Lower bound: “grows slower than or same rate as” f(N) 

 

 Think of Θ(g(N)) as “equal to” f(N) 

– “Tight” bound: same growth rate 

 

(True for large N and ignoring constant factors) 
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