e articte aistusses the exper enve of

iy prograseming skils e novice
programmers thriough learner-centered teen-

nrcs reviews, The articie first addresses the

TS N teschrg programming skins
fooaovice programmers anoan educational
coting. Leasner-ventered technical reviews
and their bepetiss an teaching programm:ng
kills are discussed, and toe abservations

and speat

e ostrateg es used durmg learmer-
centered technacat reviews are addressed. The
LSt section sumearizes the experiments of
idooting learner-centered technical reviews
m teaching programming skitls and presents

4 tew highhyhts for future work.

Key words
fearner-centered, programming coueses

programming skills, technical review

SQP References

Teaching Software Quality Assurance
nan Undergraduate Software
Engincering Program

Vol. 9, issue 3

Claude Y. Laporte, Alain April,

and Khaled Benchenf

Teaching Challenges:

Testing and Debugging Skills
Vol. 11, issue 1
Fereydoun Kazemian
and Trudy Howies

22 SQP VOL 13, NO. 1/ 2010, ASQ

Teaching
Programming
Skills Through

Learner-Centered

Technical Reviews
for Novice

Programmers

XIAOHONG (SOPHIE) WANG
Salisbury University

INTRODUCTION

Noviee programmers face many chatlenges in learning the hasic
skitls required to design and implement programs. First, program-
ming requires thinking with abstract conceepts, which is ditficult
for noviees, Seeond, programming includes manv ditferent tasks.
such as probleny solving, algorithm and data structure design.
programming language comprehension, testing, and debugging,
Weakness in any one of these arcas can lead to inefficient
programming expericnces and buggy programs. Mastering all of
these skills atonee. however. can be overwhelhing tor beginners
and requires a ot of training and practice.

MeCauley et al 120087 viewed programming as a process of
building a plan. in the form of source code, to achiceve 4 certain
goal. When the plan breaks down, i hug oceurs. The cause of the
breakdown, that is, the canse of hugs, can stem from students’
preconeeptions, misconceptions, and the fragilitv of their
knowledie and understanding of programming irsclf and of the
programming landuages being used.

Razemian and Howles 120084 conducted o survev to under-
stand the programming behaviors of novice programmers and
found that amoud the students thevy surveved: 1) only 3 perent
of the students alwavs developed o design and/or a plan betore
thevstarted programming: and 25 only one-third of the students

abwavs static cheehed their work and even fess than one-third o

Teaching Programming Skills Through Learner-Centered Technical Reviews for Novice Programmers

the students alwavs pertormed a unit test on their work.
The reason for not cheeking/testing was Lick of time. The
students spent so much time trving to get their programs
to compile and run that they had no time left for testing,
Their survey results showed that the students were not
aware that some forethought could help them identify
problem arcas and resudtin fewer bugs and less rework.
The results also indicated the students needed better
time management and planning skills, better knowledge
of programming languages. and better debugging skills,

Luand Wang (2006) adopted learner-centered techni-
cal reviews for programming courses by tailoring industry
teehnical reviews to their speeial educational needs.
Their results indicate that learner-centered technical
reviews are effective in an existing computer seicnee
curriculum. In this article, deseriptions are given of
strategies and experiences in teaching and improving
beginning programmer programming skills by conduet-
ing learner-centered technical reviews in programming
courses. As such, the article includes the following:
desceriptions of learner-centered technical reviews and
their benctits: case studies of applving learner-centered
technical reviews to teach programming skills in
200- and J00-level programming courses: results of
experiments: and plans for future work. The narrative in
this article deseribes practices emploved by the author

and other colleagues from two different universities.

LEARNER-CENTERED
TECHNICAL REVIEWS
FOR TEACHING
PROGRAMMING SKILLS

Background

Technical reviews are still the most effective method
for discovering defeets in software artifacts in industry.
When learner-centered technical reviews were designed,
the artifacts, review tasks, role plavs, expectations,
format. and frequency of traditional industry technical
reviews were moditied and adjusted to suit educational
needs. Since the audiences of technical reviews in an
educational environment are students who varvin their
academic background, maturity level, and experienee,
the doals and strategies for learner-centered techni-
cal reviews at cach programming course should be

determined by the level of the programming course.

One important fact that should be pointed ourt is that,
in real-world technical reviews, people only idenrify
problems—they do not solve them. To serve learning
goals for students, however, a moditication was made 1o
this practice by incorporating problem-solving processes,
such as the defeet correction process. into learner-
centered reviews, For examiple, the instructors would
like students to see the debugging process with their
owneves. The instructors” experience and other researceh
{Anewalt 2005 Gehringer etal. 2003) suggested that the
adjusted traditional technical reviews have a very high
educational value. For instance, they can help students
improve their soft skills, such as giving constructive
criticisms and being receptive and open to suggestions.
Seeond. they can motivate students to do their best in
their work, and henee train them to strive for excellence
in their future career. Regular review sessions also foree
students to plan carly for their assisnments and malke
steady and incremental progress. This not only improves
the quality of their work, but it also makes them appreci-
ate the importance of planning in software development.
Overall. learner-centered technical reviews can be an
excellent fearning process for students.

The following briefly summarizes the strategies (in
terms of review artifacts, review tasks. role plays, and
expeetations) of learuer-centered techuical reviews.
More details can be found in Table 1.

100-level course technical reviews

At this level, reviews are focused on how to set up a
project plan and how to initiallv decompose a given
programming problem into manageable tasks. The
instructors also ensure that steady progress is made by
tracking task completion during cach review session.
When students start writing code, the instructors begin
to conduct source code reviews and demonstrate how to
use good programming stvles to avoid common crrors.
Only the advanced students are selected to show their
work during review sessions. The instructors believe
that. at this carly stage of learning to write programs. it
is vital to encourage and inspire students. A gentle and
moderate approach makes students feel comfortable
with the review process. The expectations for nrost
students are to observe and to learn. The instructors play
instrumental roles at this stage and act as moderators
and major reviewers to drive and control cach review
session by asking questions, pointing ont issues, and

providing detailed guidance,

WWW.0sq.0rg 23

Teaching Programming Skills Through Learner-Centered Technical Reviews for Novice Programmers

TABLE 1 Summary of Learner-Centered Technical Review Strategies
100 level 200 level 300 level 400 level
® ideas ® data structure ® source code e requirement
® Dplans e algorithm document
Artifacts e source code * source code * user interface design
e architecture design
® database design
® review ideas e review data structure|® detect bugs e confirm requirements
e adjust plans * review algorithm ® review styles e detect design flaws
Tasks e track progress ® track progress e review efficiency
e detect bugs e detect bugs
® review styles ® review styles
volunteers or individuals or
Producer every team every team
good students every team
e learn how to decom-|® learn how to design |® find defects e find defects
pose problem data structure e provide feedback e provide feedback
e understand good e earn how to design
programming styles algorithm
Expectation for ® observe common e ynderstand what
audience mistakes good programming
styles are
® observe common
mistakes
® provide feedback
* moderator * moderator e moderator ® reviewer
Instructor’s role)))))
® major reviewer ® major reviewer ® reviewer
Format in class in class in class open to public
Frequency one hour/week one hour/week one hour biweekly before major milestones

200-level course technical reviews

The review artifacts for 200-level courses include data
structures, algorithms, and source code. Since the
coneepts of data structure and algorithm are introduced
at this level, the instructors want to see how well these
concepts are understood and used by students. Progress
tracking, error detection, and critiques on programming
style are still important tasks, and discussions of these
topies are continued. Every student and/or team is
required to give a presentation at this stage. By this
time, all students should feel comfortable with the review
process. Besides observing and learning, students are
also cxpected to be actively engaged in each review
session by asking questions, identifying issues, and
offering suggestions. Although the instructors still act
as moderators and major reviewers, more and more
student participation is expected.

300-level course technical reviews

[J00-level courses, the major technical review artifact
is source code. At this stage, students should be familiar
with some basic approaches and tools for effective debug-
ging. The instructors can focus more on common logic

24 SQP VOL. 13, NO. 1/® 2010, ASQ

errors. programming styles, and source code efficiency.
The instructors’ roles as moderators and reviewers should

be significantly replaced by active student involvement.

400-level course technical reviews

Students enrolled in 100-level programming courses are
likely to work on large software development projects.
The instructors try to make their review sessions mirror
real-world technical reviews as much as possible. Some
review sessions at this stage are open to wider audiences
(across different courses and different majors) and focus
on higher-level software artifacts such as requirement

and database and architecture design documents.

Benefits

The activities involved in learner-centered technical
reviews include reviewing of project plans, task divi-
sion, requirements and design documents, tracking
progress, bug detection and correction, data structure
and algorithm design, program efficiency, and critiques
of programming styles. To engage students more effec-

< 2010, ASQ

Teaching Programming Skills Through Learner-Centered Technical Reviews for Novice Programmers

tively, different activities are given different emphases.
depending on the level of a course.

Reviews on project plans, task division, and project
progress help students learn and practice planning and
think ahead before programming, which are key to the
development of high-quality produets. One obstacle for
most freshmen in computer science programs is figur-
ing out where and how to start when they are given a
software project. It is hard for them to relate a real-world
problem to @ computer program. Besides, thev have
no clue as to how long it will take them to complete a
given programming task due to lack of programming
expericnee. Sometimes, thev do not understand the
requirements for a project initially. Learner-centered
technical reviews can demonstrate to them how to plan
carly for their programming assignments and make
steady and incremental progress.

Reviews on error detection and correction, data
structure and algorithm design, and program cfhciency
allow students to have firsthand experience with the
debugging process, clarify their understanding of pro-
gramming language components, and identify common
syntax and logic mistakes. By participating in these
activities, students learn basic debugging techniques,
improve program comprehension skills, understand how
memory is used tor storing variables, visualize program
execution dynamically, and identify possible discrepan-
cies using debugging tools. They also see the examples
and consequences of good and bad programming stvles.
Using critiques on programming styles also teaches them
about bug prevention and why and how to develop good
programming styles.

Other benefits of learner-centered technical reviews
have also been identified. For example, unlike the tradi-
tional project grading process and regular lab sessions,
learner-centered technical reviews allow an instructor’s
teedback and suggestions on one person’s work to benefit
awhole class. Since learner-centered technical reviews
are conducted as part of a programming course, the goals
of teaching programming skills and infusing software
quality assurance are achieved with no extra credit
hours added to an already busy curriculum.

CASE STUDIES

In this scction, the author describes the experience
with learner-centered technical reviews among 100- to
300-level programming courses. Learner-centered

technical reviews at these levels put much emphasis

on programming skills.such as project planning, time
management, and debugging skills.

Improve Planning and Time
Management Skills

As shown in Table 1, project plans are part of the techni-
al review artifacts. A tvpical project plan includes task
division and assignments and a tentative schedule for a
project. During the first few learner-centered technical
review sessions, the following typical student behaviors
were observed:

Acouple of project teams had clear plans and made
steady progress. Some teams had a plan but the plan
was not followwed properly and the progress was incon-
sistent. Some teams had no plan and had a slow start.
A couple of teams did not come to technical reviews.

When the instructors assigned programming projects,
they often allocated a portion of a project grade to plan-
ning related activities such as having a tentative schedule
and making stcady progress. They hoped to use this
incentive to motivate students and avoid procrastination.
Being motivated, however, was only part of the story.
Some students, particularly novice programmers, did
not even know what a project plan was or how to come
up with one. They were not experienced in work load
and time estimation either. During the first few review
sessions, the instruetors usually went over the project
plan for each team and provided feedback and advice
on how tasks were divided, how time estimations were
caleulated, and how these estimations could be improved
by using correlation and analog. When students reviewed
their schedule, the instructors provided advice on how
to adjust the schedule according to newly updated task
division and time estimation, and what to do when a
deadline approached.

Interesting changes oceurred after the first few review
sessions. Some students seemed to learn quickly and
started to have a plan with better clarity and, most
importantly, tried to use the plan to direct and regulate
their time and effort. Although they still could not
completely follow through the plan, the fact that they
realized what needed to be done for the project, and
their efforts in trying to complete the tasks before each
deadline, became very obvious and indicated they were
making progress.

Toward the end of a programming course, the instruc-
tors observed the following student behaviors:

WWW.450.0rg 25

1

Teaching Programming Skills Through Learner-Centered Technical Reviews for Novice Programmers

Teams with clear plans made steady progress
according to their plan and completed the project
with good quality. Most teams had a plan, and even
though the plan was not followed consistently, steady
progress was made. In the end, they completed their
projects with some struggle (for example, program-
ming overnight before deadlines and leaving no time
Sor testing).

The aforementioned observations were encouraging,
They made the instructors realize that, while allocating
a portion of the project grade to planning activities did
motivate students, learner-centered technical reviews
provided them with many effective learning opportunities
to improve their planning and time management skills.

Teach Debugging Skills

Besides project plans, another major group of review arti-
facts for 100- to 300-level programming courses includes
data structures, algorithms, and source code. When
the instructors reviewed these artifacts, they identified
many problems that were directly or indirectly related
to student debugging skills. Whenever these problems
were identified, they seized the opportunity during
review sessions to introduce debugging techniques.
The following behaviors were often observed during
learner-centered technical review sessions:

Students entered many lines of source code without
any attempt to compile. This led to a lot of frustration
when they suw a long list of compilation errors after
they finally compiled their program.

This was a very common behavior among begin-
ning programmers. To a certain extent, this behavior
reflected their lack of confidence when they faced
both a new programming environment and a new
programming language. Typing as much source code
as they could provided them with some comfort, even
though real progress might not be made. During review
sessions. the instructors suggested that students use an
incremental development approach by typing in a small
portion of source code first, and then compiling and
running it to make it bug free before adding more lines
of code. Successfully going through that process alone
gave students a sense of achievement, gradually built
their confidence, and eventually helped them become
acquainted with the new programming environment and
the language. This also prepared them for understanding
and using backeracking techniques when they debugged
their programs. When students used an incremental

26 SQP VOL. 13, NO. 1/® 2010, ASQ

development approach, they had a better idea of when
and where a program stopped working properly by
looking at the changes made recently.

Students did not understand compiler error mes-
sages and did not know how to use the helpful features
provided by a programming environment.

This was also very common among students in
lower-level programming courses. Most compiler error
messages use technical nomenclatures with which
beginning students are not familiar. The existence of
other useful information within a compiler error message,
such as the line number of the error, does not get noticed
initially. Most integrated development environments have
many user-friendly features, but those nice features will
not benefit beginners if they don't know how to use them.
The instructors took this opportunity to teach students
how to interpret a compiler error message and familiar-
ized them with these useful features. The instructors
also introduced basic strategies on how to avoid those
errors. For instance, missing the closing parenthesis or
brace was a very common error, and this error could
be avoided by putting down both opening and closing
parentheses or braces at the same time before adding
anything between the pair.

Many common logic errors were identified. For
example, in a conditional statement “if (x==y),” u
single equal sign “="was used instead of “==." Other
examples were accessing an urray beyond its bound-
ary (caused by misunderstanding of the concepts of
array sizge and array index); misusing multiple “if”
statements and “ielse if” statement; and using a
variable to accumulate a total without initializing the
variable to zero first.

When these errors were identified during learner-
centered technical reviews, the instructors started by
reinforcing related programming language concepts and
then demonstrating how a program behaved differently
with and without the existence of those bugs using a
debugging tool. This was a great time to teach how
to use debugging tools. After seeing the contrasting
behaviors a subtle difference in source code could make,
students grew to attend more details. The instructors
also used debugging tools to show how the values of
variables were changed as a result of the execution of a
line of source code, and how these changes affected the
overall behavior of a program, that is, going into different
branches. Those live demonstrations allowed students to
gain a deeper understanding of the dynamic behaviors

Teaching Programming Skills Through Learner-Centered Technical Reviews for Novice Programmers

of cach language component and begin to build mental
pictures of program executions.

When « program was compiled successfully but
did not produce expected results, students did not
know what to do. They did not know where and how
10 look for the errors.

This was a frequently observed behavior in regular lab
sessions. It was also the most difticult one to tackle since
there could be many different scenarios for a program
to misbehave and strategies to be selected depended
on specific scenarios. This was a perfect opportunity,
however. to teach debugging strategies and techniques
so students could learn to reproduce, isolate, track, and
fix problems. The instructors introduced techniques
relevant to the programming problem in question and
demonstrated how to select and apply a specific tech-
nique. For example, the first step in debugging was to
reproduce the problem, that is, to create a test case that
caused the program to fail. The strategies and techniques
assoeiated with reproducing a problem were introduced.
The next step was to tind out what was relevant. that
is, to create simplified test cases that contained only
the relevant circumstances. The best scenario would
be a simplitied test case that immediately pinpointed
the defect. The strategies and techniques on how to
achieve this were introduced. Once the instructors had
reproduced and simplified the problem, they tried to help
students understand how the failure came to be. The
hasic techniques for creating and verifying hypotheses,
making experiments, and conducting the process in a
systematic fashion were discussed.

After the introduction to debugging strategies and
the demonstration of using those strategies by the
instructors, students were asked to apply what they
had learned to similar problems in their own programs.
The instructors found that this was a very productive
process compared with the one-to-one (one instructor
to one student) debugging during regular lab sessions,
since the demonstration and feedback by the instructors
were seen by all students in the class.

Poor programming styles were observed frequently.
For example, there was no comment in source code;
duplicate code segments were found within a program;
source code was not properly aligned; « huge main
program was written instead of breaking it into mod-
ules; and meaningless variable names were used often.

Like any other practice, good programming habits
developed in an carly stage of learning go 4 long way.

With so many skills for novice programmers to master.
however, programming stvles tend to become the least
important ones to be considered. Although a portion of
a project grade was usually assigned to programming
styles, the instructors found that, even though some
students handed in “nicely commented” programs,
they added these comments at the last minute cither

“to make the instructors happy” or “to get the credit.”
PP} g

This was understandable, since the novices did not have
enough knowledge to know the differences between
good and bad stvles. So it was important for them to
see comparisons of different styles and realize the
consequences of programming with different styles.
At this stage, it was the instructors’ responsibilities to
show examples of good and bad code and the significant
consequences they led to. The instructors also showed
students how common errors could be avoided with good
programming habits and encouraged the development
of good programming habits. Through those training
exercises, students learned to achieve bug prevention
by becoming defensive programmers.

DISCUSSIONS AND
FUTURE WORK

Learner-centered technical reviews proved to be very cffec-
tive in achieving the educational objectives, particularly in
teaching programming skills to beginning programmers.

In the surveys conducted for learner-centered techni-
cal reviews at the end of cach course, students strongly
agreed that learner-centered technical reviews helped
them become more motivated and encouraged them to
develop better plans for their projects. Learner-centered
technical reviews also helped them learn and improve
their programming skills. They thought the quality of
their final projects had been improved. Most students
felt comfortable sharing their incomplete work, or
sometimes, their mistakes with the rest of the class
during review sessions.

According to the survey results, source code reviews
and debugging process demonstrations were the two most
beneficial activities. Students agreed that the time spent
on the reviews was worthwhile. Students believed that
a few minutes spent on reviews often saved them from
getting stuck for hours when they worked on their own.
Students strongly supported regular review sessions,
such as weekly or bi-weckly, if possible.

To utilize the full potential of this practice, the author
and her colleagues plan to work on the following arcas.

www.asq.org 27

Teaching Programming Skills Through Learner-Centered Technical Reviews for Novice Programmers

First. although debugging techniques are introduced
during learner-centered technical reviews, this is done
on mn ad-hoe basis. They believe that it is important for
students to have svstematic knowledge and understand-
ing of modern debugging techniques. An online tutorial
for debugging techniques and tools is being developed.
This tutorial will introduce students to comprehensive
and in-depth debugging techniques. Students will be
required to go through the online tutorial as part of
their programming courses.

Sceond, it is a scrious commitment both in time and
effort to incorporate technical reviews into programming
courses. So far, the effectiveness of this approach to
improve student programming skills has been observed
through the improvements of student programming
behaviors and the quality of their programming projects.
Some systematic and quantitative measurements of
the effectiveness of learner-centered technical reviews
on work qualitv improvement would be very useful,
for example, the percentage of teams whose product
plans improve as a result of technical reviews, or grade
improvements on project deliverables atter reviews. An
online tool that can be used to assess programming
knowledge and skills is currently being developed. Once
it is completed, students can take assessment tests
several times: at the beginning, during, and at the end
of cach programming course. The assessment results
should provide better quantitative measurements of
the effectiveness of learner-centered technical reviews.
Incorporating training material into this online assess-
ment tool and providing appropriate programming skill
training practices based on the assessment results is
another direction for future work.

Lastly, the author and her colleagues would like
to further explore learner-centered technical reviews
across different levels of programming courses. They
helieve students in different level programming courses

can benefit signiticantly from each other. Not only can
students in lower-level courses learn from their senior
peers technically. thev can also be inspired. They can
envision where thev will be and what they can do later
in their undergraduate experience. This can help them
hecome more conscious about what they should do pres-
ently to avoid the mistakes made by their senior peers.

Acknowledgments

The author would like to express her gratitude to all colleagues who
participated in this practice, Drs. Homer Austin and Harel Barzilai from
the department of mathematics and computer science at Salisbury
University and the anonymous reviewers are thanked for their construc-
tive comments and suggestions. The State of Maryland Higher Education
Commission provided the Welcome Fellowship for this work.

References

Anewalt, K. 2005. Using peer review as a vehicle for communication
skill development and active learning. Journal of Computing Sciences in
Colleges 21, no. 2:148-155.

Gehringer, E. F, D. D. Chin, M. A, Perez-Quinones, and M. A Ardis. 2005,
Panel: Using peer review in teaching computing. In Proceedings of the

36th SIGCSE Technical Symposium on Computer Science Education 37,

no. 1.

Kazemian, F, and T. Howles, 2008. Teaching challenges: Testing and
debugging skills for novice programmers. Software Quality Professional
i1, no. 1:5-12.

Lu, H., and X. Wang. 2006. Learner-centered technical review in pro-
gramming courses. In Proceedings of the International Conference on
Software Engineering Research and Practice, June 23-26, 702-709.

McCauley, R, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon, L
Thomas, and C. Zander. 2008. Debugging: A review of the !iterature
from an educational perspective. Computer Science Education 18, no.
2:67-92.

Biography

Xiaohong (Sophie) Wang is an associate professor in the department of
mathematics and computer science at Salisbury University in Maryland.
She has more than 10 years of industrial and academic experience. She
received her doctorate degree in computer science from the University of
Victoria, Canada. She can be reached at xswang@salisbury.edu.

Join us in San Diego, CA, February 7-10, 2011, for the
International Conference on Software Quality (ICSQ 2011)
http://www.asq-icsg.org
Theme: High Reliability and Human Safety Critical Software

28 SQP VOL. 13, NO. 1/* 2010, ASQ

