MATH 465 Spring 2008 Tentative Class Schedule

Session 1 (01/29):    Nature of Models; Model Building; Collecting Tokens; A Simulation; Mathematical System

Session 2 (01/31):    Axiom Systems & Models; A Mathematical Model for the Collecting Tokens Problem;

                               Models and Modeling; Types of Models

Session 3 (02/05):    Mendelian Genetics - A Mathematical Model; A Tree Diagram

Session 4 (02/07):    Some Kinds of Change; Growth of a Population of Flies; Bison Population in Yellowstone

Session 5 (02/12):    Genetics Model Extended; Go to Computer Lab HS 150 (10:00 am - 10:45 am);

                               Two Discrete Growth Models

Session 6 (02/14):    Mass of the Above Ground Portion of a Sorghum Plant over Time

Session 7 (02/19):    Classifying Models for Growth Processes; (discrete-time, continuous-time, deterministic, stochastic)

                               Effects of Changes in Parameters, Change of Variables in Logistic Model;                        

Session 8 (02/21):    Stable Points; Web Diagrams - Consideration of Section 2.2

Session 9 (02/26):    Modeling the Number of Fish in a Pond; Estimating Parameters; Harvesting Fish;

                               Maximum Sustainable Harvest (Population); Minimum Viable population

Session 10 (02/28):  A Glance at Social Choice; Preference Schedules; Voting and Elections

Session 11 (03/04):  A Transportation Problem; Moving Mobile Homes; Excel Solution for a 2 x 3 Transportation Problem

Session 12 (03/06):  Modeling Lynx-Hare Interaction (Introduction); Sample Data; A Model for Lynx-Hare Interaction;

                               Estimating Parameters for the Model; Sample Spreadsheet Model

Session 13 (03/11):  A Sample Spreadsheet for a L-V Model; Data from a Stella Implementation of Model

Session 14 (03/13):  Tossing Coins (Exercises 2.6: #1); Random Numbers; Random Number Algorithms;

                               A Simulation; Expected Number of Trials to Success; Some Notes on Series; Exercises 2. 6: #2

Session 15 (03/25):  Introduction to Markov Chain Processes (MCP);  Example of a MCP (Range of a Marmot)

Session 16 (03/27):  Regular, Ergodic, & Absorbing MCP's;

Session 17 (04/01):  More on Absorbing MCP's; Modeling Dynamic Change in a Raised Mire

Session 18 (04/03):  Significance of Fundamental Matrix; Simulating Successional Changes in a Raised Mire;

                               Exploring Implications of a Model;                     

Session 19 (04/08):  Review Some Theorems & Proofs Related to MCPs;

                               A Diet Problem: Introduction to Linear Programming (LP); Graphical Solution

Session 20 (04/10):  Meet with your project group regarding your presentation.

Session 21 (04/15):  Computer Solution for the Diet Problem; Some Applications of LP;

                               A Resource Allocation Problem; An Assignment Problem

Session 22 (04/17):  Dual LP Problems; Graphical Solutions; Computer Solutions; Interpretation of Output

Session 23 (04/22):  Primal & Dual Example; Another Transportation Problem (Transshipment; LP Formulation)

Session 24 (04/24):  Work on presentations

Session 25 (04/29):  Presentation  (Katie F & Rachael L; CPM/PERT)

Session 26 (04/01):  Presentation  (Katie E & Matt L; Shortest Route Problem)

Session 27 (05/06):  Presentation  (Henry H, David L, and Nathan B; Epidemics & Rumors)

Session 28 (05/08):

Session 29 (05/15):  Final Exam Due at 10:30 am

:

Final Examination Due at 11:00 a.m. on Thursday, May 15